×

The multisoliton solutions for the \((2 + 1)\)-dimensional Sawada-Kotera equation. (English) Zbl 1291.35318

Summary: Applying bilinear form and extended three-wavetype of ansätz approach on the \((2 + 1)\)-dimensional Sawada-Kotera equation, we obtain new multisoliton solutions, including the double periodic-type three-wave solutions, the breather two-soliton solutions, the double breather soliton solutions, and the three-solitary solutions. These results show that the high-dimensional nonlinear evolution equation has rich dynamical behavior.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abolowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (1991), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[2] Maccari, A., Chaos, solitons and fractals in the nonlinear Dirac equation, Physics Letters A, 336, 2-3, 117-125 (2005) · Zbl 1136.35455 · doi:10.1016/j.physleta.2004.12.091
[3] Feng, Z., Comment on “On the extended applications of homogeneous balance method”, Applied Mathematics and Computation, 158, 2, 593-596 (2004) · Zbl 1061.35108 · doi:10.1016/j.amc.2003.10.003
[4] Liu, X. Q.; Chen, H. L.; Lü, Y. Q., Explicit solutions of the generalized KdV equations with higher order nonlinearity, Applied Mathematics and Computation, 171, 1, 315-319 (2005) · Zbl 1089.35530 · doi:10.1016/j.amc.2005.01.053
[5] Wang, C.; Dai, Z.; Liang, L., Exact three-wave solution for higher dimensional KdV-type equation, Applied Mathematics and Computation, 216, 2, 501-505 (2010) · Zbl 1188.35169 · doi:10.1016/j.amc.2010.01.057
[6] Dai, Z.; Lin, S.; Fu, H.; Zeng, X., Exact three-wave solutions for the KP equation, Applied Mathematics and Computation, 216, 5, 1599-1604 (2010) · Zbl 1191.35228 · doi:10.1016/j.amc.2010.03.013
[7] Li, Z.; Dai, Z., Exact periodic cross-kink wave solutions and breather type of two-solitary wave solutions for the \((3 + 1)\)-dimensional potential-YTSF equation, Computers and Mathematics with Applications, 61, 8, 1939-1945 (2011) · Zbl 1219.35241 · doi:10.1016/j.camwa.2010.07.055
[8] Ruan, H. Y., Interactions between two-periodic solitons in the \((2 + 1)\)-dimensional Sawada-Kotera equations, Acta Physica Sinica, 53, 6, 1618-1622 (2004) · Zbl 1202.35250
[9] Fu, H. M.; Dai, Z. D., Periodic soliton wave solutions for two-dimension S-K equation, Journal of Xuzhou Normal University, 27, 4, 20-22 (2009)
[10] Wang, Z. Y.; Lv, H. L., Travelling wave solutions of \((2 + 1)\)-dimensional Sawada-Kotera equation, Journal of Liaocheng University, 23, 4 (2010)
[11] Ma, W. X.; Fan, E., Linear superposition principle applying to Hirota bilinear equations, Computers and Mathematics with Applications, 61, 4, 950-959 (2011) · Zbl 1217.35164 · doi:10.1016/j.camwa.2010.12.043
[12] Dai, Z.; Huang, J.; Jiang, M.; Wang, S., Homoclinic orbits and periodic solitons for Boussinesq equation with even constraint, Chaos, Solitons and Fractals, 26, 4, 1189-1194 (2005) · Zbl 1070.35029 · doi:10.1016/j.chaos.2005.02.025
[13] Xu, Z. H.; Xian, D. Q.; Chen, H. L., New periodic solitary-wave solutions for the Benjiamin Ono equation, Applied Mathematics and Computation, 215, 12, 4439-4442 (2010) · Zbl 1185.35213 · doi:10.1016/j.amc.2009.11.009
[14] Dai, Z.; Li, S.; Dai, Q.; Huang, J., Singular periodic soliton solutions and resonance for the Kadomtsev-Petviashvili equation, Chaos, Solitons and Fractals, 34, 4, 1148-1153 (2007) · Zbl 1142.35563 · doi:10.1016/j.chaos.2006.04.028
[15] He, J. H., Asymptotic methods for solitary solutions and compactons, Abstract and Applied Analysis, 2012 (2012) · Zbl 1257.35158 · doi:10.1155/2012/916793
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.