×

Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities. (English) Zbl 1291.35356

Summary: We consider the periodic discrete nonlinear Schrödinger equations with the temporal frequency belonging to a spectral gap. By using the generalized Nehari manifold approach developed by Szulkin and Weth, we prove the existence of ground state solutions of the equations. We obtain infinitely many geometrically distinct solutions of the equations when specially the nonlinearity is odd. The classical Ambrosetti-Rabinowitz superlinear condition is improved.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34A33 Ordinary lattice differential equations
39A12 Discrete version of topics in analysis
39A70 Difference operators

References:

[1] Hennig, D.; Tsironis, G. P., Wave transmission in nonlinear lattices, Physics Reports, 307, 5-6, 333-432 (1999) · doi:10.1016/S0370-1573(98)00025-8
[2] Teschl, G., Jacobi Operators and Completely Integrable Nonlinear Lattices. Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, 72, xvii+351 (2000), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 1056.39029
[3] Davydov, A., The theory of contraction of proteins under their excitation, Journal of Theoretical Biology, 38, 3, 559-569 (1973) · doi:10.1016/0022-5193(73)90256-7
[4] Flach, S.; Gorbach, A., Discrete breakers-advances in theory and applications, Physics Reports, 467, 1-116 (2008)
[5] Flach, S.; Willis, C. R., Discrete breathers, Physics Reports, 295, 5, 181-264 (1998) · doi:10.1016/S0370-1573(97)00068-9
[6] Su, W.; Schieffer, J.; Heeger, A., Solitons in polyacetylene, Physical Review Letters, 42, 1698-1701 (1979) · doi:10.1103/PhysRevLett.42.1698
[7] Chen, G.; Ma, S., Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Applied Mathematics and Computation, 218, 9, 5496-5507 (2012) · Zbl 1254.39006 · doi:10.1016/j.amc.2011.11.038
[8] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19, 1, 27-40 (2006) · Zbl 1220.35163 · doi:10.1088/0951-7715/19/1/002
[9] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations. II. A generalized Nehari manifold approach, Discrete and Continuous Dynamical Systems. Series A, 19, 2, 419-430 (2007) · Zbl 1220.35164 · doi:10.3934/dcds.2007.19.419
[10] Yang, M.; Chen, W.; Ding, Y., Solutions for discrete periodic Schrödinger equations with spectrum 0, Acta Applicandae Mathematicae, 110, 3, 1475-1488 (2010) · Zbl 1191.35260 · doi:10.1007/s10440-009-9521-6
[11] Zhou, Z.; Yu, J., On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, Journal of Differential Equations, 249, 5, 1199-1212 (2010) · Zbl 1200.39001 · doi:10.1016/j.jde.2010.03.010
[12] Zhou, Z.; Yu, J.; Chen, Y., On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23, 7, 1727-1740 (2010) · Zbl 1193.35176 · doi:10.1088/0951-7715/23/7/011
[13] Zhou, Z.; Yu, J.; Chen, Y., Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China. Mathematics, 54, 1, 83-93 (2011) · Zbl 1239.39010 · doi:10.1007/s11425-010-4101-9
[14] Pankov, A.; Zakharchenko, N., On some discrete variational problems, Acta Applicandae Mathematicae, 65, 1-3, 295-303 (2001) · Zbl 0993.39011 · doi:10.1023/A:1010655000447
[15] Willem, M., Minimax Theorems. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24, x+162 (1996), Boston, Mass, USA: Birkhäuser Boston, Boston, Mass, USA · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[16] Szulkin, A.; Weth, T., Ground state solutions for some indefinite variational problems, Journal of Functional Analysis, 257, 12, 3802-3822 (2009) · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[17] Szulkin, A.; Weth, T., The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, 597-632 (2010), Somerville, Mass, USA: International Press, Somerville, Mass, USA · Zbl 1218.58010
[18] Struwe, M., Variational Methods. Variational Methods, Results in Mathematics and Related Areas (3), 34, xvi+272 (1996), Berlin, Germany: Springer, Berlin, Germany · Zbl 0864.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.