×

Time-space fractional heat equation in the unit disk. (English) Zbl 1291.35427

Summary: We study a maximal solution of the time-space fractional heat equation in complex domain. The fractional time is taken in the sense of the Riemann-Liouville operator, while the fractional space is assumed in the Srivastava-Owa operator. Here we employ some properties of the univalent functions in the unit disk to determine the upper bound of this solution. The maximal solution is illustrated in terms of the generalized hypergeometric functions.

MSC:

35R11 Fractional partial differential equations
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Vázquez, L.; Trujillo, J. J.; Velasco, M. P., Fractional heat equation and the second law of thermodynamics, Fractional Calculus and Applied Analysis, 14, 3, 334-342 (2011) · Zbl 1273.80002 · doi:10.2478/s13540-011-0021-9
[2] Karatay, I.; Bayramoglu, S. R., A characteristic difference scheme for time-fractional heat equations based on the Crank-Nicholson difference schemes, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.80024 · doi:10.1155/2012/548292
[3] Hu, Y.; Nualart, D.; Song, J., Feynman-Kac formula for heat equation driven by fractional white noise, The Annals of Probability, 39, 1, 291-326 (2011) · Zbl 1210.60056 · doi:10.1214/10-AOP547
[4] Khan, M.; Gondal, M. A., Restrictions and improvements of Laplace decomposition method, Journal of Advanced Research in Scientific Computing, 3, 1, 8-14 (2011)
[5] Povstenko, Y., Time-fractional radial heat conduction in a cylinder and associated thermal stresses, Archive of Applied Mechanics, 82, 3, 345-362 (2012) · Zbl 1293.74080 · doi:10.1007/s00419-011-0560-x
[6] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198, xxiv+340 (1999), San Diego, Calf, USA: Academic Press, San Diego, Calf, USA · Zbl 0924.34008
[7] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, xvi+523 (2006), Amsterdam, The Netherlands: Elsevier Science B.V., Amsterdam, The Netherlands · Zbl 1092.45003
[8] Srivastava, H. M.; Darus, M.; Ibrahim, R. W., Classes of analytic functions with fractional powers defined by means of a certain linear operator, Integral Transforms and Special Functions, 22, 1, 17-28 (2011) · Zbl 1207.30031 · doi:10.1080/10652469.2010.489796
[9] Srivastava, H. M.; Owa, S., Univalent Functions, Fractional Calculus, and Their Applications. Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood Series: Mathematics and Its Applications, 404 (1989), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0683.00012
[10] Ibrahim, R. W., On generalized Srivastava-Owa fractional operators in the unit disk, Advances in Difference Equations, 2011, article 55 (2011) · Zbl 1273.35295 · doi:10.1186/1687-1847-2011-55
[11] Ibrahim, R. W., Ulam stability for fractional differential equation in complex domain, Abstract and Applied Analysis, 2012 (2012) · Zbl 1239.34106 · doi:10.1155/2012/649517
[12] Ibrahim, R. W., On generalized Hyers-Ulam stability of admissible functions, Abstract and Applied Analysis, 2012 (2012) · Zbl 1237.39033 · doi:10.1155/2012/749084
[13] Ibrahim, R. W., Ulam-Hyers stability for Cauchy fractional differential equation in the unit disk, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.39024 · doi:10.1155/2012/613270
[14] Ibrahim, R. W., Fractional complex transforms for fractional differential equations, Advances in Difference Equations, 2012, article 192 (2012) · Zbl 1377.35266 · doi:10.1186/1687-1847-2012-192
[15] Jalab, H. A.; Ibrahim, R. W., Denoising algorithm based on generalized fractional integral operator with two parameters, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1244.94007 · doi:10.1155/2012/529849
[16] Ibrahim, R. W., On holomorphic solution for space- and time-fractional telegraph equations in complex domain, Journal of Function Spaces and Applications, 2012 (2012) · Zbl 1250.35176 · doi:10.1155/2012/703681
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.