×

Oscillation and nonoscillation of asymptotically almost periodic half-linear difference equations. (English) Zbl 1291.39035

Summary: We analyse half-linear difference equations with asymptotically almost periodic coefficients. Using the adapted Riccati transformation, we prove that these equations are conditionally oscillatory. We explicitly find a constant, determined by the coefficients of a given equation, which is the borderline between the oscillation and the nonoscillation of the equation. We also mention corollaries of our result with several examples.

MSC:

39A21 Oscillation theory for difference equations

References:

[1] Řehák, P., Oscillatory properties of second order half-linear difference equations, Czechoslovak Mathematical Journal, 51, 2, 303-321 (2001) · Zbl 0982.39004 · doi:10.1023/A:1013790713905
[2] Došlý, O.; Fišnarová, S., Linearized Riccati technique and (non-)oscillation criteria for half-linear difference equations, Advances in Difference Equations, 2008 (2008) · Zbl 1146.39009
[3] Došlý, O.; Řehák, P., Nonoscillation criteria for half-linear second-order difference equations, Computers & Mathematics with Applications, 42, 3-5, 453-464 (2001) · Zbl 1006.39012 · doi:10.1016/S0898-1221(01)00169-9
[4] El-Morshedy, H. A., Oscillation and nonoscillation criteria for half-linear second order difference equations, Dynamic Systems and Applications, 15, 3-4, 429-450 (2006)
[5] Jiang, J.; Tang, X., Oscillation of second order half-linear difference equations (II), Applied Mathematics Letters of Rapid Publication, 24, 9, 1495-1501 (2011) · Zbl 1377.39021 · doi:10.1016/j.aml.2011.03.029
[6] Řehák, P., Generalized discrete Riccati equation and oscillation of half-linear difference equations, Mathematical and Computer Modelling, 34, 3-4, 257-269 (2001) · Zbl 1038.39002 · doi:10.1016/S0895-7177(01)00059-0
[7] Řehák, P., Oscillation criteria for second order half-linear difference equations, Journal of Difference Equations and Applications, 7, 4, 483-505 (2001) · Zbl 1009.39012 · doi:10.1080/10236190108808284
[8] Sun, Y. G.; Meng, F. W., Nonoscillation and oscillation of second order half-linear difference equations, Applied Mathematics and Computation, 197, 1, 121-127 (2008) · Zbl 1141.39010 · doi:10.1016/j.amc.2007.07.037
[9] Thandapani, E.; Ravi, K.; Graef, J. R., Oscillation and comparison theorems for half-linear second-order difference equations, Computers & Mathematics with Applications, 42, 6-7, 953-960 (2001) · Zbl 0983.39006 · doi:10.1016/S0898-1221(01)00211-5
[10] Došlý, O.; Fišnarová, S., Two-parametric conditionally oscillatory half-linear differential equations, Abstract and Applied Analysis, 2011 (2011) · Zbl 1217.34054 · doi:10.1155/2011/182827
[11] Došlý, O.; Funková, H., Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation, Abstract and Applied Analysis, 2012 (2012) · Zbl 1296.34081 · doi:10.1155/2012/738472
[12] Fišnarová, S.; Mařík, R., On constants in nonoscillation criteria for half-linear differential equations, Abstract and Applied Analysis, 2011 (2011) · Zbl 1232.34052 · doi:10.1155/2011/638271
[13] Došlý, O.; Graef, J. R.; Jaroš, J., Forced oscillation of second order linear and half-linear difference equations, Proceedings of the American Mathematical Society, 131, 9, 2859-2867 (2003) · Zbl 1020.39002 · doi:10.1090/S0002-9939-02-06811-9
[14] Wong, P. J. Y.; Agarwal, R. P., Oscillations and nonoscillations of half-linear difference equations generated by deviating arguments, Computers & Mathematics with Applications, 36, 10-12, 11-26 (1998) · Zbl 0933.39025 · doi:10.1016/S0898-1221(98)80005-9
[15] Agarwal, R. P.; Bohner, M.; Grace, S. R.; O’Regan, D., Discrete Oscillation Theory, xiv+961 (2005), New York, NY, USA: Hindawi Publishing Corporation, New York, NY, USA · Zbl 1084.39001 · doi:10.1155/9789775945198
[16] Beesack, P. R., Hardy’s inequality and its extensions, Pacific Journal of Mathematics, 11, 39-61 (1961) · Zbl 0103.03503 · doi:10.2140/pjm.1961.11.39
[17] Elbert, Á., A half-linear second order differential equation, Qualitative Theory of Differential Equations, Vol. I, II (Szeged, 1979). Qualitative Theory of Differential Equations, Vol. I, II (Szeged, 1979), Colloquia Mathematica Societatis János Bolyai, 30, 153-180 (1981), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0511.34006
[18] Mirzov, J. D., On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems, Journal of Mathematical Analysis and Applications, 53, 2, 418-425 (1976) · Zbl 0327.34027 · doi:10.1016/0022-247X(76)90120-7
[19] Došlý, O.; Řehák, P., Half-Linear Differential Equations (2005), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1090.34001
[20] Hasil, P.; Veselý, M., Oscillation of half-linear differential equations with asymptotically almost periodic coefficients, Advances in Difference Equations, 2013, 122, 1-15 (2013) · Zbl 1365.05013 · doi:10.1186/1687-1847-2013-1
[21] Agarwal, R. P., Difference Equations and Inequalities: Theory, Methods, and Applications, xvi+971 (2000), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0952.39001
[22] Kelley, W. G.; Peterson, A. C., Difference Equations: An Introduction with Applications, x+403 (2001), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0970.39001
[23] Kneser, A., Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Mathematische Annalen, 42, 3, 409-435 (1893) · JFM 25.0522.01 · doi:10.1007/BF01444165
[24] Naĭman, P. B., The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix, Izvestija Vysših Učebnyh Zavedeniĭ Matematika, 1959, 1 (8), 129-135 (1959) · Zbl 0112.07101
[25] Gesztesy, F.; Ünal, M., Perturbative oscillation criteria and Hardy-type inequalities, Mathematische Nachrichten, 189, 121-144 (1998) · Zbl 0903.34030 · doi:10.1002/mana.19981890108
[26] Schmidt, K. M., Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators, Communications in Mathematical Physics, 211, 2, 465-485 (2000) · Zbl 0953.34069 · doi:10.1007/s002200050822
[27] Krüger, H., On perturbations of quasiperiodic Schrödinger operators, Journal of Differential Equations, 249, 6, 1305-1321 (2010) · Zbl 1214.34077 · doi:10.1016/j.jde.2010.06.018
[28] Krüger, H.; Teschl, G., Effective Prüfer angles and relative oscillation criteria, Journal of Differential Equations, 245, 12, 3823-3848 (2008) · Zbl 1167.34009 · doi:10.1016/j.jde.2008.06.004
[29] Hasil, P.; Veselý, M., Critical oscillation constant for difference equations with almost periodic coefficients, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.39006 · doi:10.1155/2012/471435
[30] Luef, F.; Teschl, G., On the finiteness of the number of eigenvalues of Jacobi operators below the essential spectrum, Journal of Difference Equations and Applications, 10, 3, 299-307 (2004) · Zbl 1049.39027 · doi:10.1080/10236190310001641227
[31] Hasil, P., Conditional oscillation of half-linear differential equations with periodic coefficients, Archivum Mathematicum, 44, 2, 119-131 (2008) · Zbl 1212.34110
[32] Došlý, O.; Hasil, P., Critical oscillation constant for half-linear differential equations with periodic coefficients, Annali di Matematica Pura ed Applicata IV, 190, 3, 395-408 (2011) · Zbl 1231.34059 · doi:10.1007/s10231-010-0155-0
[33] Corduneanu, C., Almost Periodic Functions, x+237 (1968), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0175.09101
[34] Veselý, M., Construction of almost periodic sequences with given properties, Electronic Journal of Differential Equations, 2008, 126, 1-22 (2008) · Zbl 1165.39014
[35] Fan, K., Les fonctions asymptotiquement presque-périodiques d’une variable entière et leur application à l’étude de l’itération des transformations continues, Mathematische Zeitschrift, 48, 685-711 (1943) · Zbl 0061.16302
[36] Řehák, P., Hartman-Wintner type lemma, oscillation, and conjugacy criteria for half-linear difference equations, Journal of Mathematical Analysis and Applications, 252, 2, 813-827 (2000) · Zbl 0969.39009 · doi:10.1006/jmaa.2000.7124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.