×

Solution and stability of the multiquadratic functional equation. (English) Zbl 1291.39057

Summary: We consider the multiquadratic functional equation. We establish its general solution and provide a characterization for this functional equation. Finally, we prove the Hyers-Ulam-Rassias stability of this functional equation.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
39B52 Functional equations for functions with more general domains and/or ranges
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ulam, S. M., A Collection of Mathematical Problems (1960), New York, NY, USA: Interscience Publishers, New York, NY, USA · Zbl 0086.24101
[2] Hyers, D. H., On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, 27, 4, 222-224 (1941) · JFM 67.0424.01
[3] Rassias, Th. M., On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society, 72, 2, 297-300 (1978) · Zbl 0398.47040
[4] Jung, S.-M., Hyers-Ulam-Rassias stability of Jensen’s equation and its application, Proceedings of the American Mathematical Society, 126, 11, 3137-3143 (1998) · Zbl 0909.39014
[5] Jun, K.-W.; Kim, H.-M., The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, Journal of Mathematical Analysis and Applications, 274, 2, 867-878 (2002) · Zbl 1021.39014
[6] Jun, K.-W.; Kim, H.-M., Stability problem of Ulam for generalized forms of Cauchy functional equation, Journal of Mathematical Analysis and Applications, 312, 2, 535-547 (2005) · Zbl 1082.39023
[7] Kim, G. H., On the stability of the Pexiderized trigonometric functional equation, Applied Mathematics and Computation, 203, 1, 99-105 (2008) · Zbl 1159.39013
[8] Lee, S. H.; Im, S. M.; Hwang, I. S., Quartic functional equations, Journal of Mathematical Analysis and Applications, 307, 2, 387-394 (2005) · Zbl 1072.39024
[9] Najati, A.; Rassias, Th. M., Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Analysis: Theory, Methods & Applications, 72, 3-4, 1755-1767 (2010) · Zbl 1191.39027
[10] Sikorska, J., Exponential functional equation on spheres, Applied Mathematics Letters, 23, 2, 156-160 (2010) · Zbl 1205.39032
[11] Aczél, J.; Dhombres, J., Functional Equations in Several Variables (1989), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0685.39006
[12] Czerwik, S., Functional Equations and Inequalities in Several Variables (2002), River Edge, NJ, USA: World Scientific Publishing, River Edge, NJ, USA · Zbl 1011.39019
[13] Hyers, D. H.; Isac, G.; Rassias, Th. M., Stability of Functional Equations in Several Variables (1998), Boston, Mass, USA: Birkhäauser, Boston, Mass, USA · Zbl 0894.39012
[14] Kannappan, Pl., Functional Equations and Inequalities with Applications (2009), Springer · Zbl 1178.39032
[15] Cholewa, P. W., Remarks on the stability of functional equations, Aequationes Mathematicae, 27, 1-2, 76-86 (1984) · Zbl 0549.39006
[16] Czerwik, S., On the stability of the quadratic mapping in normed spaces, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 62, 1, 59-64 (1992) · Zbl 0779.39003
[17] Jung, S.-M.; Sahoo, P. K., Hyers-Ulam stability of the quadratic equation of Pexider type, Journal of the Korean Mathematical Society, 38, 3, 645-656 (2001) · Zbl 0980.39023
[18] Lee, J. R.; Jang, S.-Y.; Park, C.; Shin, D. Y., Fuzzy stability of quadratic functional equations, Advances in Difference Equations, 2010 (2010) · Zbl 1192.39021
[19] Moslehian, M. S.; Nikodem, K.; Popa, D., Asymptotic aspect of the quadratic functional equation in multi-normed spaces, Journal of Mathematical Analysis and Applications, 355, 2, 717-724 (2009) · Zbl 1168.39012
[20] Skof, F., Local properties and approximation of operators, Rendiconti del Seminario Matematico e Fisico di Milano, 53, 1, 113-129 (1983) · Zbl 0599.39007
[21] Park, W.-G.; Bae, J.-H., On a bi-quadratic functional equation and its stability, Nonlinear Analysis: Theory, Methods & Applications, 62, 4, 643-654 (2005) · Zbl 1076.39027
[22] Ciepliński, K., On the generalized Hyers-Ulam stability of multi-quadratic mappings, Computers & Mathematics with Applications, 62, 9, 3418-3426 (2011) · Zbl 1236.39025
[23] Ciepliński, K., On multi-Jensen functions and Jensen difference, Bulletin of the Korean Mathematical Society, 45, 4, 729-737 (2008) · Zbl 1172.39033
[24] Ciepliński, K., Stability of the multi-Jensen equation, Journal of Mathematical Analysis and Applications, 363, 1, 249-254 (2010) · Zbl 1211.39017
[25] Ciepliński, K., Generalized stability of multi-additive mappings, Applied Mathematics Letters, 23, 10, 1291-1294 (2010) · Zbl 1204.39026
[26] Ciepliński, K., Stability of multi-additive mappings in non-Archimedean normed spaces, Journal of Mathematical Analysis and Applications, 373, 2, 376-383 (2011) · Zbl 1204.39027
[27] Prager, W.; Schwaiger, J., Multi-affine and multi-Jensen functions and their connection with generalized polynomials, Aequationes Mathematicae, 69, 1-2, 41-57 (2005) · Zbl 1072.39025
[28] Prager, W.; Schwaiger, J., Stability of the multi-Jensen equation, Bulletin of the Korean Mathematical Society, 45, 1, 133-142 (2008) · Zbl 1151.39023
[29] Park, C.-G., Multi-quadratic mappings in Banach spaces, Proceedings of the American Mathematical Society, 131, 8, 2501-2504 (2003) · Zbl 1044.39019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.