×

Spacetimes admitting \(W_{2}\)-curvature tensor. (English) Zbl 1291.53022


MSC:

53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1007/s10773-009-0121-z · Zbl 1255.83110
[2] DOI: 10.1007/BF00762798 · Zbl 0334.76059
[3] DOI: 10.1007/BF02302387 · Zbl 0855.53056
[4] De U. C., Math. Rep. 11 pp 139–
[5] DOI: 10.1007/BFb0088835 · Zbl 0437.00004
[6] Kramer D., Exact Solutions of Einstein’s Field Equations (1980) · Zbl 0449.53018
[7] Matsumoto K., Publ. Math. Debrecen 33 pp 61–
[8] Narlikar J. V., General Relativity and Gravitation (1978)
[9] O’Neill B., Semi-Riemannian Geometry (1983)
[10] Özen Zengin F., Miskolc Math. Notes 12 pp 289–
[11] Pokhariyal G. P., Yokohama Math. J. 18 pp 105–
[12] DOI: 10.1155/S0161171282000131 · Zbl 0486.53022
[13] Pokhariyal G. P., Balkan J. Geom. Appl. 6 pp 45–
[14] Pokhariyal G. P., Yokohama Math. J. 19 pp 97–
[15] Pokhariyal G. P., Yokohama Math. J. 20 pp 115–
[16] DOI: 10.1007/978-1-4612-2754-0
[17] Stephani H., General Relativity – An Introduction to the Theory of Gravitational Field (1982) · Zbl 0494.53026
[18] Taleshian A., J. Math. Comput. Sci. 1 pp 28–
[19] Yildiz A., Diff. Geom. Dynam. Syst. 12 pp 289–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.