zbMATH — the first resource for mathematics

Biased random walk in positive random conductances on \(\mathbb{Z}^{d}\). (English) Zbl 1291.60209
Author’s abstract: We study the biased random walk in positive random conductances on \(\mathbb{Z}^{d}\). This walk is transient in the direction of the bias. Our main result is that the random walk is ballistic if, and only if, the conductances have finite mean. Moreover, in the sub-ballistic regime we find the polynomial order of the distance moved by the particle. This extends results obtained by L. Shen [Ann. Appl. Probab. 12, No. 2, 477–510 (2002; Zbl 1016.60092)], who proved positivity of the speed in the uniformly elliptic setting.

60K37 Processes in random environments
60J45 Probabilistic potential theory
Full Text: DOI arXiv
[1] Babson, E. and Benjamini, I. (1999). Cut sets and normed cohomology with applications to percolation. Proc. Amer. Math. Soc. 127 589-597. · Zbl 0910.60075
[2] Ben Arous, G., Fribergh, A., Gantert, N. and Hammond, A. (2008). Biased random walks on Galton-Watson trees with leaves. Available at . 0711.3686 · Zbl 1239.60091
[3] Ben Arous, G. and Hammond, A. (2011). Randomly biased walks on subcritical trees. Available at . 1101.4041 · Zbl 1254.60094
[4] Ben Arous, G., Hu, Y., Olla, S. and Zeitouni, O. (2013). Einstein relation for biased random walk on Galton-Watson trees. Ann. Inst. H. Poincaré Probab. Statist. 49 698-721. · Zbl 1296.60266
[5] Ben Arous, G. and Černý, J. (2006). Dynamics of trap models. In Mathematical Statistical Physics 331-394. Elsevier, Amsterdam. · Zbl 1458.82019
[6] Berger, N., Gantert, N. and Peres, Y. (2003). The speed of biased random walk on percolation clusters. Probab. Theory Related Fields 126 221-242. · Zbl 1029.60087
[7] Carne, T. K. (1985). A transmutation formula for Markov chains. Bull. Sci. Math. (2) 109 399-405. · Zbl 0584.60078
[8] Dhar, D. (1984). Diffusion and drift on percolation networks in an external field. J. Phys. A 17 257-259.
[9] Dhar, D. and Stauffer, D. (1998). Drift and trapping in biased diffusion on disordered lattices. Internat. J. Modern Phys. C 9 349-355.
[10] Doyle, P. G. and Snell, J. L. (1984). Random Walks and Electric Networks. Carus Mathematical Monographs 22 . Mathematical Association of America, Washington, DC. · Zbl 0583.60065
[11] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040. · Zbl 0567.60095
[12] Durrett, R. (1996). Probability : Theory and Examples , 2nd ed. Duxbury Press, Belmont, CA. · Zbl 1202.60001
[13] Enriquez, N., Sabot, C. and Zindy, O. (2009). A probabilistic representation of constants in Kesten’s renewal theorem. Probab. Theory Related Fields 144 581-613. · Zbl 1168.60034
[14] Enriquez, N., Sabot, C. and Zindy, O. (2009). Limit laws for transient random walks in random environment on \(\mathbb{Z}\). Ann. Inst. Fourier ( Grenoble ) 59 2469-2508. · Zbl 1200.60093
[15] Fribergh, A. and Hammond, A. (2011). Phase transition for the speed of the biased random walk on the supercritical percolation cluster. Comm. Pure Appl. · Zbl 1290.60104
[16] Gantert, N., Mathieu, P. and Piatnitski, A. (2010). Einstein relation for reversible diffusions in random environment. Comm. Pure Appl. Math. 65 187-228. · Zbl 1264.60062
[17] Hammond, A. (2011). Stable limit laws for randomly biased walks on trees. Available at . 1101.4043
[18] Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation process. Math. Proc. Cambridge Philos. Soc. 56 13-20. · Zbl 0122.36403
[19] Havlin, S. and Ben-Avraham, D. (2002). Diffusion in disordered media. Adv. Phys. 51 187-292.
[20] Kesten, H. (1982). Percolation Theory for Mathematicians. Progress in Probability and Statistics 2 . Birkhäuser, Basel. · Zbl 0522.60097
[21] Lebowitz, J. L. and Rost, H. (1994). The Einstein relation for the displacement of a test particle in a random environment. Stochastic Process. Appl. 54 183-196. · Zbl 0812.60096
[22] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1996). Domination by product measures. Ann. Probab. 24 1711-1726. · Zbl 0882.60046
[23] Lyons, R. and Peres, Y. (2013). Probability on trees and networks. Available at .
[24] Saloff-Coste, L. (1997). Lectures on finite Markov chains. In Lectures on Probability Theory and Statistics ( Saint-Flour , 1996), (P. Bernard, ed.). Lecture Notes in Math. 1665 301-413. Springer, Berlin. · Zbl 0885.60061
[25] Shen, L. (2002). Asymptotic properties of certain anisotropic walks in random media. Ann. Appl. Probab. 12 477-510. · Zbl 1016.60092
[26] Sznitman, A.-S. (2003). On the anisotropic walk on the supercritical percolation cluster. Comm. Math. Phys. 240 123-148. · Zbl 1087.82011
[27] Sznitman, A.-S. (2004). Topics in random walks in random environment. In School and Conference on Probability Theory. ICTP Lect. Notes XVII 203-266 (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste. · Zbl 1060.60102
[28] Sznitman, A.-S. and Zerner, M. (1999). A law of large numbers for random walks in random environment. Ann. Probab. 27 1851-1869. · Zbl 0965.60100
[29] Zeitouni, O. (2004). Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189-312. Springer, Berlin. · Zbl 1060.60103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.