Zhao, Weijing; Li, Hongxing Midpoint derivative-based closed Newton-Cotes quadrature. (English) Zbl 1291.65076 Abstr. Appl. Anal. 2013, Article ID 492507, 10 p. (2013). Summary: A novel family of numerical integration of closed Newton-Cotes quadrature rules is presented which uses the derivative value at the midpoint. It is proved that these kinds of quadrature rules obtain an increase of two orders of precision over the classical closed Newton-Cotes formula, and the error terms are given. The computational cost for these methods is analyzed from the numerical point of view, and it has shown that the proposed formulas are superior computationally to the same order closed Newton-Cotes formula when they reduce the error below the same level. Finally, some numerical examples show the numerical superiority of the proposed approach with respect to closed Newton-Cotes formulas. Cited in 3 Documents MSC: 65D30 Numerical integration × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Petrovskaya, N.; Venturino, E., Numerical integration of sparsely sampled data, Simulation Modelling Practice and Theory, 19, 9, 1860-1872 (2011) · doi:10.1016/j.simpat.2011.05.003 [2] Bailey, D. H.; Borwein, J. M., High-precision numerical integration: progress and challenges, Journal of Symbolic Computation, 46, 7, 741-754 (2011) · Zbl 1291.65070 · doi:10.1016/j.jsc.2010.08.010 [3] Atkinson, K. E., An Introduction to Numerical Analysis, xvi+693 (1989), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0718.65001 [4] Burden, R. L.; Faires, J. D., Numerical Analysis (2011), Boston, Mass, USA: Brooks/Cole, Boston, Mass, USA [5] Isaacson, E.; Keller, H. B., Analysis of Numerical Methods, xv+541 (1966), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0168.13101 [6] Dehghan, M.; Masjed-Jamei, M.; Eslahchi, M. R., On numerical improvement of closed Newton-Cotes quadrature rules, Applied Mathematics and Computation, 165, 2, 251-260 (2005) · Zbl 1070.65018 · doi:10.1016/j.amc.2004.07.009 [7] Babolian, E.; Masjedjamei, M.; Eslahchi, M. R., On numerical improvement of Gauss-Legendre quadrature rules, Applied Mathematics and Computation, 160, 3, 779-789 (2005) · Zbl 1062.65028 · doi:10.1016/j.amc.2003.11.031 [8] Eslahchi, M. R.; Dehghan, M.; Masjed-Jamei, M., On numerical improvement of the first kind Gauss-Chebyshev quadrature rules, Applied Mathematics and Computation, 165, 1, 5-21 (2005) · Zbl 1079.65023 · doi:10.1016/j.amc.2004.06.102 [9] Dehghan, M.; Masjed-Jamei, M.; Eslahchi, M. R., On numerical improvement of open Newton-Cotes quadrature rules, Applied Mathematics and Computation, 175, 1, 618-627 (2006) · Zbl 1088.65022 · doi:10.1016/j.amc.2005.07.030 [10] Burg, C. O. E., Derivative-based closed Newton-Cotes numerical quadrature, Applied Mathematics and Computation, 218, 13, 7052-7065 (2012) · Zbl 1246.65043 · doi:10.1016/j.amc.2011.12.060 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.