Steinbach, O. Boundary element methods for variational inequalities. (English) Zbl 1291.65193 Numer. Math. 126, No. 1, 173-197 (2014). The author is interested in the numerical analysis of the Galerkin boundary element approximation of first kind variational inequalities to find \[ u\in K:=\{v\in\widetilde H^{1/2}(\Gamma): v\leq g\text{ on }\Gamma\}\text{ such that }\langle Au,v- u\rangle_1\geq \langle f,v-u\rangle_1\text{ for all }v\in K. \] A numerical example is presented. Reviewer: Hans Benker (Merseburg) Cited in 11 Documents MSC: 65K15 Numerical methods for variational inequalities and related problems 49J40 Variational inequalities Keywords:Galerkin boundary element approximation; variational inequalities; numerical example PDF BibTeX XML Cite \textit{O. Steinbach}, Numer. Math. 126, No. 1, 173--197 (2014; Zbl 1291.65193) Full Text: DOI Link References: [1] Brenner, S., Scott, R.L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994) · Zbl 0804.65101 [2] Brezis, H.: Problémes unilateraux. J. Math. Pures Appl. 51, 1-168 (1972) · Zbl 0237.35001 [3] Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. Numer. Math. 28, 431-443 (1977) · Zbl 0369.65030 [4] Carstensen, C., Gwinner, J.: FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34, 1845-1864 (1997) · Zbl 0896.65079 [5] Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38, 1200-1216 (2001) · Zbl 0979.65046 [6] Clement, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numer. R-2, 77-84 (1975) · Zbl 0368.65008 [7] Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613-626 (1988) · Zbl 0644.35037 [8] Eck, C., Jarušek, J., Krbec, M.: Unilateral contact problems. Variational methods and existence theorems. Pure Appl. Math. 270. Chapman & Hall/CRC, Boca Raton (2005) · Zbl 1079.74003 [9] Eck, C., Steinbach, O., Wendland, W.L.: A symmetric boundary element method for contact problems with friction. Math. Comput. Simul. 50, 43-61 (1999) · Zbl 1027.65162 [10] Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963-971 (1974) · Zbl 0297.65061 [11] Glowinski, R.: Numerical methods for nonlinear variational problems. Springer, Berlin (1980) · Zbl 0456.65035 [12] Gwinner, J., Stephan, E.P.: A boundary element procedure for contact problems in plane linear elastostatics. RAIRO Model. Math. Anal. Numer. 27, 457-480 (1993) · Zbl 0773.73096 [13] Han, H.: A direct boundary element method for Signorini problems. Math. Comp. 55, 115-128 (1990) · Zbl 0705.65084 [14] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865-888 (2002) · Zbl 1080.90074 [15] Hintermüller, M., Ulbrich, M.: A mesh-independence result for semi-smooth Newton methods. Math. Program. Ser. B 101, 151-184 (2004) · Zbl 1079.65065 [16] Hsiao, G.C., Wendland, W.L.: The Aubin-Nitsche lemma for integral equations. J. Integral Equ. 3, 299-315 (1981) · Zbl 0478.45004 [17] Hüeber, S., Wohlmuth, B.: An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43, 156-173 (2005) · Zbl 1083.74047 [18] Isac, G.: Complementarity Problems. Lecture Notes in Mathematics, vol. 1528. Springer, Berlin (1992) · Zbl 0795.90072 [19] Ito, K., Kunisch, K.: Semi-smooth Newton methods for the Signorini problem. Appl. Math. 53, 455-468 (2008) · Zbl 1199.49064 [20] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) · Zbl 0203.09001 [21] Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493-519 (1967) · Zbl 0152.34601 [22] Maischak, M., Stephan, E.P.: Adaptive hp-versions of BEM for Signorini problems. Appl. Numer. Math. 54, 425-449 (2005) · Zbl 1114.74062 [23] McLean, W., Steinbach, O.: Boundary element preconditioners for a hypersingular integral equation on an interval. Adv. Comput. Math. 11, 271-286 (1999) · Zbl 0951.65145 [24] Natterer, F.: Optimale \[L_2\] L2-Konvergenz finiter Elemente bei Variationsungleichungen. Bonn. Math. Schrift. 89, 1-12 (1976) · Zbl 0358.65085 [25] Of, G., Phan, T.X., Steinbach, O.: Boundary element methods for Dirichlet boundary control problems. Math. Methods Appl. Sci. 33, 2187-2205 (2010) · Zbl 1219.49021 [26] Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483-493 (1990) · Zbl 0696.65007 [27] Spann, W.: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math. 65, 337-356 (1993) · Zbl 0798.65106 [28] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008) · Zbl 1153.65302 [29] Stephan, E.P., Wendland, W.L.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363-390 (1990) · Zbl 0725.73091 [30] Suttmeier, F.-T.: Numerical solution of variational inequalities by adaptive finite elements. Vieweg + Teubner, Wiesbaden (2008) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.