×

A moving mesh method for singularly perturbed problems. (English) Zbl 1291.65271

Summary: A singularly perturbed time dependent convection diffusion problem is solved on a rectangular domain, using the moving mesh method which uses the equidistribution principle. The problem has a boundary at the steady state. It is shown that the numerical approximations generated by the moving mesh method converge uniformly with respect to the singular perturbation parameter. Theoretical results are obtained which are verified using numerical results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kopteva, N.; Stynes, M., A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem, SIAM Journal on Numerical Analysis, 39, 4, 1446-1467 (2001) · Zbl 1012.65076 · doi:10.1137/S003614290138471X
[2] Linss, T.; Dresden, T. U., Uniform point wise convergence of finite difference schemes using grid equi-distribution, Journal of Computing, 66, 27-39 (2001) · Zbl 0984.65077 · doi:10.1007/s006070170037
[3] Ma, J.; Jiang, Y.; Xiang, K., Numerical simulation of blowup in nonlocal reaction-diffusion equations using a moving mesh method, Journal of Computational and Applied Mathematics, 230, 1, 8-21 (2009) · Zbl 1166.65067 · doi:10.1016/j.cam.2008.10.063
[4] Dorfi, E. A.; Drury, L. O., Simple adaptive grids for 1-D initial value problems, Journal of Computational Physics, 69, 1, 175-195 (1987) · Zbl 0607.76041 · doi:10.1016/0021-9991(87)90161-6
[5] Gowrisankar, S.; Natesan, S., Uniformly convergent numerical method for singularly perturbed parabolic initial-boundary-value problems with equidistributed grids, International Journal of Computer Mathematics (2013) · Zbl 1299.65211 · doi:10.1080/00207160.2013.792925
[6] Huang, W.; Ren, Y.; Russell, R. D., Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM Journal on Numerical Analysis, 31, 3, 709-730 (1994) · Zbl 0806.65092 · doi:10.1137/0731038
[7] Beckett, G.; Mackenzie, J. A., Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem, Applied Numerical Mathematics, 35, 2, 87-109 (2000) · Zbl 0963.65086 · doi:10.1016/S0168-9274(99)00065-3
[8] de Boor, C., Good Approximation by Splines with Variable Notes II, Conference on the Numerical Solution of Differential Equations. Conference on the Numerical Solution of Differential Equations, Lecture Notes Series 363 (1973), Berlin, Germany: Springer, Berlin, Germany · Zbl 0255.41007
[9] Huang, W.; Ren, Y.; Russell, R. D., Moving mesh methods based on moving mesh partial differential equations, Journal of Computational Physics, 113, 2, 279-290 (1994) · Zbl 0807.65101 · doi:10.1006/jcph.1994.1135
[10] Li, S.; Petzold, L.; Ren, Y., Stability of moving mesh systems of partial differential equations, SIAM Journal on Scientific Computing, 20, 2, 719-738 (1998) · Zbl 0924.65081 · doi:10.1137/S1064827596302011
[11] Ren, Y.; Russell, R. D., Moving mesh techniques based upon equidistribution, and their stability, SIAM Journal on Scientific Computing, 13, 6, 1265-1286 (1992) · Zbl 0764.65055 · doi:10.1137/0913072
[12] Zhou, Q.; Chen, Y.; Yang, Y., Two improved algorithms and implementation for a singularly perturbed problem on moving meshes, Journal of Systems Science and Complexity, 24, 6, 1232-1240 (2011) · Zbl 1338.93245 · doi:10.1007/s11424-011-8138-9
[13] Yang, J., Alternative convergence analysis for a kind of singularly perturbed boundary value problems, World Academy of Science, 52, 1-4 (2003)
[14] Cen, Z., A second-order finite difference scheme for a class of singularly perturbed delay differential equation, International Journal of Computer Mathematics, 254-302 (1998)
[15] Farrell, P. A.; Hegarty, A. F.; Miller, J. J. H.; O’Riordan, E.; Shishkin, G. I., Parameter Robust Computational Methods for Singularly Perturbed Differential Equations (2000), CRC Press · Zbl 0964.65083
[16] Miller, J. J. H.; O’Riordan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems (1998), River Edge, NJ, USA: World Scientific, River Edge, NJ, USA · Zbl 0945.65521
[17] Morton, K. W., Numerical Solution of Convection Diffusion Problems (1995), London, UK: Chapman and Hall, London, UK
[18] Gowrisankar, S.; Natesan, S., The parameter uniform numerical method for singularly perturbed parabolic reactiondiffusion problems on equidistributed grids, Applied Mathematics Letters, 26, 11, 1053-1060 (2013) · Zbl 1311.65111
[19] Ma, J.; Jiang, Y., Moving mesh techniques based upon equidistribution, and their stability, Journal of Computational Physics, 228, 18, 6977-6990 (2009) · Zbl 1175.65097 · doi:10.1016/j.jcp.2009.06.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.