×

The influence of user protection behaviors on the control of Internet worm propagation. (English) Zbl 1291.68034

Summary: Computer users’ reactions to the outbreak of Internet worm directly determine the defense capability of the computer and play an important role in the spread of worm. In this paper, in order to characterize the impacts of adaptive user protection behaviors, an improved SIS model is proposed to describe the Internet worm propagation. The results of theoretical analysis indicate that the protective campaigns of users can indeed reduce the worm’s reproduction number to values less than one. But it may not be sufficient to eradicate the worm. In certain condition, a backward bifurcation leading to bistability can occur. These are new findings in the worm propagation model that bring new challenges to control the spread of the worm and further demonstrate the importance of user behaviors in controlling the worm propagation. Corresponding to the analysis results, defense and control strategies are provided.

MSC:

68M11 Internet topics
93B35 Sensitivity (robustness)
34C60 Qualitative investigation and simulation of ordinary differential equation models

References:

[1] Kienzle, D. M.; Elder, M. C., Recent worms: a survey and trends, Proceedings of the 2003 ACM Workshop on Rapid Malcode (WORM ’03), ACM
[2] Toutonji, O. A.; Yoo, S.-M.; Park, M., Stability analysis of VEISV propagation modeling for network worm attack, Applied Mathematical Modelling, 36, 6, 2751-2761 (2012) · Zbl 1246.68067 · doi:10.1016/j.apm.2011.09.058
[3] Fan, X.; Xiang, Y., Modeling the propagation of Peer-to-Peer worms, Future Generation Computer Systems, 26, 8, 1433-1443 (2010) · doi:10.1016/j.future.2010.04.009
[4] Yang, X.; Yang, L.-X., Towards the epidemiological modeling of computer viruses, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.68036 · doi:10.1155/2012/259671
[5] Yang, L.-X.; Yang, X.; Liu, J.; Zhu, Q.; Gan, C., Epidemics of computer viruses: s complex-network approach, Applied Mathematics and Computation, 219, 16, 8705-8717 (2013) · Zbl 1288.92025 · doi:10.1016/j.amc.2013.02.031
[6] Zhu, Q.; Yang, X.; Yang, L.-X.; Zhang, C., Optimal control of computer virus under a delayed model, Applied Mathematics and Computation, 218, 23, 11613-11619 (2012) · Zbl 1278.49045 · doi:10.1016/j.amc.2012.04.092
[7] Zou, C. C.; Gong, W.; Towsley, D., Code red worm propagation modeling and analysis, Proceedings of the 9th ACM Conference on Computer and Communications Security, ACM
[8] Yang, X.; Mishra, B. K.; Liu, Y., Theory, model, and methods, Discrete Dynamics in Nature and Society, 2012 (2012) · doi:10.1155/2012/473508
[9] Yu, W.; Wang, X.; Champion, A.; Xuan, D.; Lee, D., On detecting active worms with varying scan rate, Computer Communications, 34, 11, 1269-1282 (2011) · doi:10.1016/j.comcom.2010.10.014
[10] Choi, Y.-H.; Li, L.; Liu, P.; Kesidis, G., Worm virulence estimation for the containment of local worm outbreak, Computers and Security, 29, 1, 104-123 (2010) · doi:10.1016/j.cose.2009.07.002
[11] Yang, L.-X.; Yang, X., Propagation behavior of virus codes in the situation that infected computers are connected to the internet with positive probability, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1248.68077 · doi:10.1155/2012/693695
[12] Zheng, X.; Li, T.; Fang, Y., Strategy of fast and light-load cloud-based proactive benign worm countermeasure technology to contain worm propagation, The Journal of Supercomputing, 62, 1451-1479 (2012)
[13] Newman, M. E. J., Spread of epidemic disease on networks, Physical Review E, 66, 1 (2002) · doi:10.1103/PhysRevE.66.016128
[14] Yang, L.-X.; Yang, X., The spread of computer viruses under the influence of removable storage devices, Applied Mathematics and Computation, 219, 8, 3914-3922 (2012) · Zbl 1311.68039 · doi:10.1016/j.amc.2012.10.027
[15] Zou, C. C.; Towsley, D.; Gong, W., Email virus propagation modeling and analysis, TR-CSE-03-04 (2003), Amherst, Mass, USA: University of Massachusettes, Amherst, Mass, USA
[16] Chen, G.; Gray, R. S., Simulating non-scanning worms on peer-to-peer networks, Proceedings of the 1st International Conference on Scalable Information Systems (InfoScale ’06) · doi:10.1145/1146847.1146876
[17] Zou, C. C.; Towsley, D.; Gong, W., Modeling and simulation study of the propagation and defense of internet e-mail worms, IEEE Transactions on Dependable and Secure Computing, 4, 2, 106-118 (2007) · doi:10.1109/TDSC.2007.1001
[18] Gan, C.; Yang, X.; Liu, W.; Zhu, Q.; Zhang, X., Propagation of computer virus under human intervention: a dynamical model, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1248.68074 · doi:10.1155/2012/106950
[19] Sun, X.; Liu, Y.-H.; Zhu, J.-Q.; Li, F.-P., Research on simulation and modeling of social network worm propagation, Chinese Journal of Computers, 34, 7, 1252-1261 (2011) · doi:10.3724/SP.J.1016.2011.01252
[20] Yuan, H.; Chen, G., Network virus-epidemic model with the point-to-group information propagation, Applied Mathematics and Computation, 206, 1, 357-367 (2008) · Zbl 1162.68404 · doi:10.1016/j.amc.2008.09.025
[21] Feng, L.; Liao, X.; Han, Q.; Song, L., Modeling and analysis of peer-to-peer botnets, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.68045 · doi:10.1155/2012/865075
[22] Song, L.-P.; Han, X.; Liu, D.-M.; Jin, Z., Adaptive human behavior in a two-worm interaction model, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1253.68051 · doi:10.1155/2012/828246
[23] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J., On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28, 4, 365-382 (1990) · Zbl 0726.92018 · doi:10.1007/BF00178324
[24] Anderson, R. M.; May, R. M., Infectious Diseases of Humans (1991), Oxford, UK: Oxford University, Oxford, UK
[25] Carr, J., Applications of Center Manifold Theory (1981), New York, NY, USA: Springer, New York, NY, USA · Zbl 0464.58001
[26] Perko, L., Differential Equations and Dynamical Systems. Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, xiv+553 (2001), New York, NY, USA: Springer, New York, NY, USA · Zbl 0973.34001
[27] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos. Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics, 2, xiv+672 (1990), New York, NY, USA: Springer, New York, NY, USA · Zbl 0701.58001
[28] Arriola, L.; Hyman, J., Forward and Adjoint Sensitivity Analysis: With Applications in Dynamical Systems. Forward and Adjoint Sensitivity Analysis: With Applications in Dynamical Systems, Lecture Notes in Linear Algebra and Optimisation (2005), Mathematical and Theoretical Biology Institute
[29] Zeitoun, A.; Jamin, S., Rapid Exploration of Internet Live Address Space Using Optimal Discovery Path, Proceedings of IEEE Global Telecommunications Conference (GLOBECOM ’03)
[30] Song, L.-P.; Jin, Z.; Sun, G.-Q.; Zhang, J.; Han, X., Influence of removable devices on computer worms: dynamic analysis and control strategies, Computers & Mathematics with Applications, 61, 7, 1823-1829 (2011) · Zbl 1219.37065 · doi:10.1016/j.camwa.2011.02.010
[31] Zhu, Q.; Yang, X.; Ren, J., Modeling and analysis of the spread of computer virus, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 5117-5124 (2012) · Zbl 1261.93012 · doi:10.1016/j.cnsns.2012.05.030
[32] Mishra, B. K.; Pandey, S. K., Effect of anti-virus software on infectious nodes in computer network: a mathematical model, Physics Letters A, 376, 2389-2393 (2012)
[33] Yang, L.-X.; Yang, X.; Wen, L.; Liu, J., A novel computer virus propagation model and its dynamics, International Journal of Computer Mathematics, 89, 17, 2307-2314 (2012) · Zbl 1255.68058 · doi:10.1080/00207160.2012.715388
[34] Gan, C.; Yang, X.; Liu, W.; Zhu, Q., A propagation model of computer virus with nonlinear vaccination probability, Communications in Nonlinear Science and Numerical Simulation · doi:10.1016/j.cnsns.2013.06.018
[35] Yang, L.-X.; Yang, X.; Zhu, Q.; Wen, L., A computer virus model with graded cure rates, Nonlinear Analysis: Real World Applications, 14, 1, 414-422 (2013) · Zbl 1258.68020 · doi:10.1016/j.nonrwa.2012.07.005
[36] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Maier, A. G., Qualitative Theory of Second-Order Dynamical Systems (1973), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0282.34022
[37] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, xvi+453 (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0515.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.