Existence and uniqueness of the weak solutions for the steady incompressible Navier-Stokes equations with damping. (English) Zbl 1291.76080

Summary: This paper is concerned with the boundary-value problem for the steady incompressible Navier-Stokes equations with damping. Two cases are considered here: 1) the Dirichlet’s boundary condition; 2) the nonhomogeneous boundary condition. we obtain the existence and uniqueness of the weak solutions for the steady incompressible Navier-Stokes equations with damping using different methods for the above cases.


76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35D30 Weak solutions to PDEs
35Q30 Navier-Stokes equations
Full Text: Euclid


[1] D.Bresch, B.Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and covergence to the quasigeostrophic model. Comm. Math. Phys. 238 (1-2) (2003), 221-223. · Zbl 1037.76012 · doi:10.1007/s00220-003-0859-8
[2] D. Bresch, B. Desjardins, Chi-Kun Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations. 28 (3-4) (2003), 843-868. · Zbl 1106.76436 · doi:10.1081/PDE-120020499
[3] X. J. Cai, Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping. J. Math. Anal. Appl. 343 (2008), 799-809. · Zbl 1143.35349 · doi:10.1016/j.jmaa.2008.01.041
[4] Galdi. G. P, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. Linearized Steady Problems. Springer-Verlag. NewYork. Berlin. etc. 1994. · Zbl 0949.35004
[5] L.Hsiao, Quasilinear Hyperbolic Systems and Dissipative Mechanisims , World Scientific, 1997. · Zbl 0911.35003
[6] F. M. Huang, R. H. Pan, Convergence rate for compressible Euler equations with damping and vaccum. Arch. Ration. Mech. Anal. 166 (2003), 359-367. · Zbl 1022.76042 · doi:10.1007/s00205-002-0234-5
[7] LERAY, J. Etude de Diverses Équations Intégrales on Linéaires et de Quelques Problémes que Pose I’Hydrodynamique. J. Math. Pures Appl. 12, 1-82 [Introduction to VIII, VIII.3, VIII.4, Introduction to IX, IX. 4, Notes for X], 1933.
[8] K. Masuda, Weak solutions of Navier-Stokes equations. Tohoku Math. J. 36 (1984), 623-646. · Zbl 0568.35077 · doi:10.2748/tmj/1178228767
[9] H. Sohr, The Navier-Stokes Equations: an elementary funcational analytic approach , Birkh\(\ddot{a}\)user, 2001. · Zbl 0983.35004
[10] Struwe, M. Regular Solutions of the Stationary Navier-Stokes Equations on \(R^{5}\), Math. Annalen. 302, 719-741[Introduction to VIII], 1995. · Zbl 0861.35075 · doi:10.1007/BF01444514
[11] R. Teman, Navier-Stokes equations theory and numerical analysis. North-Holland-Amsterdam. New York, Oxford, 1984.
[12] Youdovich, V.I. An Example of Loss of Stability and Generation of Secondary Flow in a Closed Vessel. Mat.Sb. 74, 306-329; English Transl: Math. USSR Sbornik. 3, 1967, 519-533 [Introduction to VIII, VIII.2].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.