×

The auxiliary field method in quantum mechanics. (English) Zbl 1291.81130

Summary: The auxiliary field method is a new technique to obtain closed formulae for the solutions of eigenequations in quantum mechanics. The idea is to replace a Hamiltonian \(H\) for which analytical solutions are not known by another one \(\tilde H\), including one or more auxiliary fields, for which they are known. For instance, a potential \(V(r)\) not solvable is replaced by another one \(P(r)\) more familiar, or a semirelativistic kinetic part is replaced by an equivalent nonrelativistic one. If the auxiliary fields are eliminated by an extremization procedure, the Hamiltonian \(\tilde H\) reduces to Hamiltonian \(H\). The approximation comes from the replacement of these fields by pure real constants. The approximant solutions for \(H\), eigenvalues and eigenfunctions, are then obtained by the solutions of \(\tilde H\) in which the auxiliary parameters are eliminated by an extremization procedure for the eigenenergies, which takes the form of a transcendental equation to solve. If \(H=T(\mathbf {p})+V(r)\) and if \(P(r)\) is a power law, the approximate eigenvalues can be written \(T(p_0)+V(r_0)\), where the mean impulsion \(p_0\) is a function of the mean distance \(r_0\) and where \(r_0\) is determined by an equation which is linked to the generalized virial theorem. The general properties of the method are studied and the connections with the envelope theory presented. Its mean field and (anti)variational characters are also discussed. This method is first applied to nonrelativistic and semirelativistic two-body systems, with a great variety of potentials (sum of power laws, logarithm, exponential, square root). Closed formulae are produced for energies, eigenstates, various observables, and critical constants (when it is relevant), with sometimes a very good accuracy. The method is then used to solve nonrelativistic and semirelativistic many-body systems with one-body and two-body interactions. For such cases, analytical solutions can only be obtained for systems of identical particles, but several systems of interest for atomic and hadronic physics are studied. General results concerning the many-body critical constants are presented, as well as duality relations existing between approximate and exact eigenvalues.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions , Dover Publications, New York, 1970.
[2] T. J. Allen, M. G. Olsson, and S. Veseli, Excited glue and the vibrating flux tube , Phys. Lett. B, 434 (1998), 110-114.
[3] J. F. Arvis, The exact q\(\overline{\text{q}}\) potential in Nambu string theory , Phys. Lett. B, 127 (1983), 106-108.
[4] G. S. Bali, QCD forces and heavy quark bound states, Phys. Rep., 343 (2001), 1-136. · Zbl 0972.81672
[5] E. Bergshoeff, M. de Roo, B. de Wit, and P. Van Nieuwenhuizen, Ten-dimensional Maxwell-Einstein supergravity, its currents, and the issue of its auxiliary fields , Nuclear Phys. B, 195 (1982), 97-136. · Zbl 0900.53034
[6] S. K. Bose, A. Jabs, and H. J. W. Müller-Kirsten, Comments on quark-confinement potentials , Phys. Rev. D, 13 (1976), 1489-1493.
[7] S. Boukraa and J.-L. Basdevant, Technical methods for solving bound-state equations in momentum space , J. Math. Phys., 30 (1989), 1060-1072. · Zbl 0669.46040
[8] N. Brambilla, G. M. Prosperi, and A. Vairo, Three-body relativistic flux tube model from QCD Wilson-loop approach, Phys. Lett. B, 362 (1995), 113-122.
[9] F. Brau, Bohr-sommerfeld quantization and meson spectroscopy , Phys. Rev. D, 62 (2000), 014005.
[10] F. Brau, Necessary and sufficient conditions for existence of bound states in a central potential , J. Phys. A, 36 (2003), 9907-9913. · Zbl 1047.81516
[11] F. Brau, Upper limit on the critical strength of central potentials in relativistic quantum mechanics , J. Math. Phys., 46 (2005), 032305. · Zbl 1076.81041
[12] F. Brau and F. Calogero, Upper and lower limits for the number of \(S\) -wave bound states in an attractive potential, J. Math. Phys., 44 (2003), 1554-1575. · Zbl 1062.81146
[13] F. Brau and F. Calogero, Upper and lower limits on the number of bound states in a central potential , J. Phys. A, 36 (2003), 12021-12063. · Zbl 1049.81021
[14] F. Brau and M. Lassaut, Critical strength of attractive central potentials , J. Phys. A, 37 (2004), 11243-11257. · Zbl 1067.81022
[15] L. Brillouin, La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives (French), Comptes Rendus de l’Académie des Sciences, 183 (1926), 24-26. · JFM 52.0967.05
[16] L. Brink, P. di Vecchia, and P. Howe, A Lagrangian formulation of the classical and quantum dynamics of spinning particles , Nuclear Phys. B, 118 (1977), 76-94.
[17] F. Buisseret, N. Matagne, and C. Semay, Spin contribution to light baryons in different large-\(N\) limits, Phys. Rev. D, 85 (2012), 036010.
[18] F. Buisseret and V. Mathieu, Hybrid mesons with auxiliary fields , Eur. Phys. J. A, 29 (2006), 343-351.
[19] F. Buisseret and C. Semay, Two- and three-body descriptions of hybrid mesons , Phys. Rev. D, 74 (2006), 114018. · Zbl 1302.81103
[20] F. Buisseret and C. Semay, Light baryon masses in different large-\(N_c\) limits, Phys. Rev. D, 82 (2010), 056008.
[21] F. Buisseret, C. Semay, V. Mathieu, and B. Silvestre-Brac, Excited flux tube from q\(\overline{\text{q}}\)g hybrid mesons , Eur. Phys. J. A, 32 (2007), 123-126.
[22] F. Buisseret, C. Semay, and B. Silvestre-Brac, Some equivalences between the auxiliary field method and envelope theory , J. Math. Phys., 50 (2009), 032102. · Zbl 1187.81100
[23] K. M. Case, Singular potentials , Physical Rev., 80 (1950), 797-806. · Zbl 0039.22403
[24] G. S. Chaddha, ed., Quantum Mechanics , New Age International, New Delhi, India, 2005.
[25] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert \(W\) function, Adv. Comput. Math., 5 (1996), 329-359. · Zbl 0863.65008
[26] S. Deser and B. Zumino, A complete action for the spinning string , Phys. Lett. B, 65 (1976), 369-373.
[27] P. A. M. Dirac, Lectures on Quantum Mechanics , vol. 2 of Belfer Graduate School of Science Monographs Series, Belfer Graduate School of Science, New York, 1967. · Zbl 1156.01359
[28] A. Y. Dubin, A. B. Kaidalov, and Y. A. Simonov, The QCD string with quarks. I. Spinless quarks, Phys. Atom. Nucl., 56 (1993), 1745-1759.
[29] B. Durand and L. Durand, Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation , Phys. Rev. D, 28 (1983), 396-406.
[30] B. Durand and L. Durand, Erratum: “Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation” [Phys. Rev. D, 28 (1983), 396-406] , Phys. Rev. D, 50 (1994), 6662.
[31] M. Fabre de la Ripelle, A confining potential for quarks , Phys. Lett. B, 205 (1988), 97-102. · Zbl 0683.35075
[32] S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity , Phys. Lett. B, 74 (1978), 333-335.
[33] R. P. Feynman, Forces in molecules , Phys. Rev., 56 (1939), 340-343. · Zbl 0022.42302
[34] S. Fleck, B. Silvestre-Brac, and J.-M. Richard, Search for diquark clustering in baryons , Phys. Rev. D, 38 (1988), 1519-1529.
[35] S. Flügge, Practical Quantum Mechanics , Classics in Mathematics, Springer-Verlag, Berlin, 1999.
[36] W. M. Frank, D. J. Land, and R. M. Spector, Singular potentials , Rev. Modern Phys., 43 (1971), 36-98.
[37] J. L. Goity and N. Matagne, Baryon Regge trajectories in the light of the expansion , Phys. Lett. B, 655 (2007), 223-227.
[38] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products , Academic Press, New York, 7th ed., 2007. · Zbl 1208.65001
[39] A. E. S. Green, Energy eigenvalues for Yukawa potentials , Phys. Rev. A, 26 (1982), 1759-1761.
[40] D. J. Griffiths, Introduction to Quantum Mechanics , Prentice Hall, Englewood Cliffs, NJ, 1995. · Zbl 0818.00001
[41] R. L. Hall, Energy trajectories for the \(N\) -boson problem by the method of potential envelopes, Phys. Rev. D, 22 (1980), 2062-2072.
[42] R. L. Hall, A geometrical theory of energy trajectories in quantum mechanics , J. Math. Phys., 24 (1983), 324-335.
[43] R. L. Hall, Kinetic potentials in quantum mechanics , J. Math. Phys., 25 (1984), 2708-2715.
[44] R. L. Hall, Spectral geometry of power-law potentials in quantum mechanics , Phys. Rev. A, 39 (1989), 5500-5507.
[45] R. L. Hall, Refining the comparison theorem of quantum mechanics , J. Phys. A, 25 (1992), 4459-4469. · Zbl 0764.34059
[46] R. L. Hall, Envelope theory in spectral geometry , J. Math. Phys., 34 (1993), 2779-2788. · Zbl 0777.35066
[47] R. L. Hall, A simple interpolation formula for the spectra of power-law and log potentials , J. Phys. G, 26 (2000), 981-986.
[48] R. L. Hall, Relativistic comparison theorems , Phys. Rev. A, 81 (2010), 052101.
[49] R. L. Hall and Q. D. Katatbeh, Semiclassical energy formulae for power law and log potentials in quantum mechanics , J. Phys. A, 36 (2003), 7173-7184. · Zbl 1048.81022
[50] R. L. Hall, W. Lucha, and F. F. Schöberl, Energy bounds for the spinless Salpeter equation: harmonic oscillator , J. Phys. A, 34 (2001), 5059-5064. · Zbl 1048.81024
[51] R. L. Hall, W. Lucha, and F. F. Schöberl, Discrete spectra of semirelativistic Hamiltonians from envelope theory , Internat. J. Modern Phys. A, 17 (2002), 1931-1952. · Zbl 1028.81014
[52] R. L. Hall, W. Lucha, and F. F. Schöberl, Discrete spectra of semirelativistic Hamiltonians , Internat. J. Modern Phys. A, 18 (2003), 2657-2680. · Zbl 1238.81115
[53] R. L. Hall, W. Lucha, and F. F. Schöberl, The energy of a system of relativistic massless bosons bound by oscillator pair potentials , Phys. Lett. A, 320 (2003), 127-130. · Zbl 1065.81545
[54] R. L. Hall, W. Lucha, and F. F. Schöberl, Relativistic \(N\) -boson systems bound by pair potentials \(V(r_ {ij})=g(r_ {ij}^ 2)\), J. Math. Phys., 45 (2004), 3086-3094. · Zbl 1071.81032
[55] R. L. Hall and B. Schwesinger, The complete exact solution to the translation-invariant \(N\) -body harmonic oscillator problem, J. Math. Phys., 20 (1979), 2481-2483.
[56] W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen (German), Z. Phys., 33 (1925), 879-893. · JFM 51.0728.07
[57] H. Hellmann, Ein kombiniertes Näherungsverfahren zur Energieberechnung im Vielelektronenproblem (German), Acta Physicochimica U.R.S.S., 1 (1935), 913-940. · Zbl 0011.37903
[58] I. W. Herbst, Spectral theory of the operator \((p^{2}+m^{2})^{1/2}-Ze^{2}/r\) , Comm. Math. Phys., 53 (1977), 285-294. · Zbl 0375.35047
[59] M. Honma, T. Mizusaki, and T. Otsuka, Diagonalization of Hamiltonians for many-body systems by auxiliary field quantum Monte Carlo technique , Phys. Rev. Lett., 75 (1995), 1284-1287.
[60] P. S. Howe and R. W. Tucker, A locally supersymmetric and reparametrization invariant action for a spinning membrane , J. Phys. A, 10 (1977), L155-L158.
[61] A. Jakovác, Renormalization of the O(N) model in the \(1/N\) expansion in the auxiliary field formalism, Phys. Rev. D, 78 (2008), 085013.
[62] H. Jeffreys, On certain approximate solutions of linear differential equations of the second order , Proc. Lond. Math. Soc., 23 (1924), 428-436. · JFM 50.0301.02
[63] Y. S. Kalashnikova and A. V. Nefediev, Heavy-light mesons spectrum from the nonperturbative QCD in the einbein field formalism, Phys. Lett. B, 492 (2000), 91-97.
[64] B. S. Kandemir, Two interacting electrons in a uniform magnetic field and a parabolic potential: the general closed-form solution , J. Math. Phys., 46 (2005), 032110. · Zbl 1076.81013
[65] T. Kashiwa, Y. Ohnuki, and M. Suzuki, Path Integral Methods , Oxford University Press, Oxford, 1997. · Zbl 0898.58004
[66] H. A. Kramers, Wellenmechanik und halbzahlige Quantisierung (German), Z. Phys., 39 (1926), 828-840. · JFM 52.0969.04
[67] L. D. Landau and L. M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory , Butterworth-Heinemann, Oxford, 3rd ed., 1981. · Zbl 0178.57901
[68] Z.-F. Li, J.-J. Liu, W. Lucha, W.-G. Ma, and F. F. Schöberl, Relativistic harmonic oscillator , J. Math. Phys., 46 (2005), 103514. · Zbl 1111.81047
[69] D. B. Lichtenberg, Application of a generalized Feynman-Hellmann theorem to bound-state energy levels , Phys. Rev. D, 40 (1989), 4196-4198.
[70] E. H. Lieb and H.-T. Yau, The stability and instability of relativistic matter , Comm. Math. Phys., 118 (1988), 177-213. · Zbl 0686.35099
[71] W. Lucha, Relativistic virial theorems , Mod. Phys. Lett. A, 5 (1990), 2473-2483.
[72] W. Lucha and F. F. Schöberl, Variational approach to the spinless relativistic Coulomb problem , Phys. Rev. D, 50 (1994), 5443-5445.
[73] W. Lucha and F. F. Schöberl, Relativistic Coulomb problem: analytic upper bounds on energy levels , Phys. Rev. A, 54 (1996), 3790-3794.
[74] W. Lucha and F. F. Schöberl, Relativistic Coulomb problem: lowest-lying energy levels at the critical coupling constant analytically , Phys. Lett. B, 387 (1996), 573-576.
[75] W. Lucha and F. F. Schöberl, Solving the Schrödinger equation for bound states with Mathematica \(3.0\) , Internat. J. Modern Phys. C, 10 (1999), 607-620. · Zbl 0948.81505
[76] W. Lucha, F. F. Schöberl, and D. Gromes, Bound states of quarks , Phys. Rep., 200 (1991), 127-240.
[77] Z.-Q. Ma, Exact solutions to the \(N\) -body Schrödinger equation for the harmonic oscillator, Found. Phys. Lett., 13 (2000), 167-178.
[78] J. K. L. MacDonald, Successive approximations by the Rayleigh-Ritz variation method , Phys. Rev., 43 (1933), 830-833. · Zbl 0007.11803
[79] A. Martin, A fit of upsilon and charmonium spectra , Phys. Lett. B, 93 (1980), 338-342.
[80] A. Martin, A simultaneous fit of bb, cc, ss (bcs Pairs) and cs spectra , Phys. Lett. B, 100 (1981), 511-514.
[81] D. C. Mattis, ed., The Many-Body Problem. An Encyclopedia of Exactly Solved Models in One Dimension , World Scientific Publishing, River Edge, NJ, 1993. · Zbl 0933.82018
[82] V. L. Morgunov, A. V. Nefediev, and Y. A. Simonov, Rotating QCD string and the meson spectrum, Phys. Lett. B, 459 (1999), 653-659.
[83] S. Moszkowski, S. Fleck, A. Krikeb, L. Theußl, J.-M. Richard, and K. Varga, Binding three or four bosons without bound subsystems , Phys. Rev. A, 62 (2000), 032504.
[84] H. Nakada and Y. Alhassid, Total and parity-projected level densities of iron-region nuclei in the auxiliary fields monte carlo shell model , Phys. Rev. Lett., 79 (1997), 2939-2942.
[85] I. M. Narodetskii, C. Semay, and A. I. Veselov, Accuracy of auxiliary field approach for baryons , Eur. Phys. J. C, 55 (2008), 403-408.
[86] W. Pauli, Über das Wasserstoffspektrum vom Standpunkte der neuen Quantenmechanik (German), Z. Phys., 36 (1926), 336-363. · JFM 52.0978.02
[87] A. M. Polyakov, Quantum geometry of bosonic strings , Phys. Lett. B, 103 (1981), 207-210.
[88] C. Quigg and J. L. Rosner, Quantum mechanics with applications to quarkonium , Phys. Rep., 56 (1979), 167-235.
[89] M. Reed and B. Simon, Methods of Modern Mathematical Physics , Academic Press, New York, 1978. · Zbl 0401.47001
[90] J.-M. Richard and S. Fleck, Limits on the domain of coupling constants for binding \(N\) -body systems with no bound subsystems, Phys. Rev. Lett., 73 (1994), 1464-1467.
[91] W. Ritz, Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik (German), J. Reine Angew. Math., 135 (1909), 1-61. · JFM 39.0449.01
[92] A. Ronveaux, ed., Heun’s Differential Equations , Oxford Science Publications, Oxford University Press, New York, 1995. · Zbl 0847.34006
[93] J. J. Sakurai, Modern Quantum Mechanics , Addison Wesley, Reading, MA, 1993.
[94] M. G. Schmidt and C. Schubert, On the calculation of effective actions by string methods , Phys. Lett. B, 318 (1993), 438-446.
[95] E. Schrödinger, Quantisierung als Eigenwertproblem. I (German), Ann. Phys., 79 (1926), 361-376.
[96] E. Schrödinger, Quantisierung als Eigenwertproblem. III (German), Ann. Phys., 80 (1926), 437-490. · JFM 52.0966.02
[97] C. Semay, On relativistic models of light mesons , J. Phys. G, 20 (1994), 689-699.
[98] C. Semay, General comparison theorem for eigenvalues of a certain class of Hamiltonians , Phys. Rev. A, 83 (2011), 024101.
[99] C. Semay, Bounds for Hamiltonians with arbitrary kinetic parts , Results in Physics, 2 (2012), 114-117.
[100] C. Semay, An upper bound for asymmetrical spinless Salpeter equations , Phys. Lett. A, 376 (2012), 2217-2221.
[101] C. Semay, D. Baye, M. Hesse, and B. Silvestre-Brac, Semirelativistic Lagrange mesh calculations , Phys. Rev. E, 64 (2001), 016703.
[102] C. Semay, F. Buisseret, N. Matagne, and F. Stancu, Baryonic mass formula in large \(N_c\) QCD versus quark model, Phys. Rev. D, 75 (2007), 096001.
[103] C. Semay, F. Buisseret, and B. Silvestre-Brac, Towers of hybrid mesons , Phys. Rev. D, 79 (2009), 094020.
[104] C. Semay, F. Buisseret, and B. Silvestre-Brac, Further developments for the auxiliary field method , J. Phys. Math., 3 (2011), Article ID P111101. · Zbl 1264.81191
[105] C. Semay, F. Buisseret, and F. Stancu, Mass formula for strange baryons in large \(N_c\) QCD versus quark model, Phys. Rev. D, 76 (2007), 116005.
[106] C. Semay and B. Silvestre-Brac, Effects of the one-gluon annihilation process on light diquonia , Phys. Rev. D, 51 (1995), 1258-1266.
[107] C. Semay and B. Silvestre-Brac, Eigenstates with the auxiliary field method , J. Phys. A, 43 (2010), 265302. · Zbl 1192.81136
[108] C. Semay, B. Silvestre-Brac, and I. M. Narodetskii, Auxiliary fields and hadron dynamics , Phys. Rev. D, 69 (2004), 014003.
[109] B. Silvestre-Brac, The cluster model and the generalized Brody-Moshinsky coefficients , J. Physique, 46 (1985), 1087-1099.
[110] B. Silvestre-Brac, Spectrum and static properties of heavy baryons , Few-Body Syst., 20 (1996), 1-25.
[111] B. Silvestre-Brac and C. Semay, Duality relations in the auxiliary field method , J. Math. Phys., 52 (2011), 052107. · Zbl 1264.81191
[112] B. Silvestre-Brac, C. Semay, and F. Buisseret, Auxiliary fields as a tool for computing analytical solutions of the Schrödinger equation , J. Phys. A, 41 (2008), 275301. · Zbl 1192.81137
[113] B. Silvestre-Brac, C. Semay, and F. Buisseret, Extensions of the auxiliary field method to solve Schrödinger equations , J. Phys. A, 41 (2008), 425301. · Zbl 1151.81013
[114] B. Silvestre-Brac, C. Semay, and F. Buisseret, The auxiliary field method and approximate analytical solutions of the Schrödinger equation with exponential potentials , J. Phys. A, 42 (2009), 245301. · Zbl 1166.81324
[115] B. Silvestre-Brac, C. Semay, and F. Buisseret, Auxiliary field method for the square root potential . preprint, http://arxiv.org/abs/0901.4614, 2009. · Zbl 1187.81100
[116] B. Silvestre-Brac, C. Semay, and F. Buisseret, Semirelativistic hamiltonians and the auxiliary field method , Internat. J. Modern Phys. A, 24 (2009), 4695-4726. · Zbl 1179.81065
[117] B. Silvestre-Brac, C. Semay, F. Buisseret, and F. Brau, The quantum \(\mathscr{N}\) -body problem and the auxiliary field method, J. Math. Phys., 51 (2010), 032104. · Zbl 1309.81357
[118] Y. A. Simonov, Baryon Regge trajectories from the area law of the Wilson loop , Phys. Lett. B, 228 (1989), 413-419.
[119] Y. A. Simonov, Regge trajectories from QCD , Phys. Lett. B, 226 (1989), 151-155.
[120] A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics , Institute of Physics Publishing, Bristol, 1994. · Zbl 0834.58042
[121] P. van Nieuwenhuizen, Supergravity , Phys. Rep., 68 (1981), 189-398.
[122] G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik (German), Z. Phys., 38 (1926), 518-529. · JFM 52.0969.03
[123] J. Wess and J. Bagger, Supersymmetry and Supergravity , Princeton Series in Physics, Princeton University Press, Princeton, NJ, 2nd ed., 1992. · Zbl 0516.53060
[124] K. G. Wilson, Confinement of quarks , Phys. Rev. D, 10 (1974), 2445-2459.
[125] B. Zwiebach, A First Course in String Theory , Cambridge University Press, Cambridge, 2004. · Zbl 1072.81001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.