×

A sharper global error bound for the generalized nonlinear complementarity problem over a polyhedral cone. (English) Zbl 1291.90265

Summary: We revisit the global error bound for the generalized nonlinear complementarity problem over a polyhedral cone (GNCP). By establishing a new equivalent formulation of the GNCP, we establish a sharper global error bound for the GNCP under weaker conditions, which improves the existing error bound estimation for the problem.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Noor, M. A., General variational inequalities, Applied Mathematics Letters, 1, 2, 119-122 (1988) · Zbl 0655.49005
[2] Wang, Y. J.; Ma, F. M.; Zhang, J. Z., A nonsmooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone, Applied Mathematics and Optimization, 52, 1, 73-92 (2005) · Zbl 1087.65064
[3] Zhang, X. Z.; Ma, F. M.; Wang, Y. J., A Newton-type algorithm for generalized linear complementarity problem over a polyhedral cone, Applied Mathematics and Computation, 169, 1, 388-401 (2005) · Zbl 1080.65052
[4] Sun, H. C.; Wang, Y. J.; Qi, L. Q., Global error bound for the generalized linear complementarity problem over a polyhedral cone, Journal of Optimization Theory and Applications, 142, 2, 417-429 (2009) · Zbl 1190.90243
[5] Sun, H. C.; Wang, Y. J., Global error bound estimation for the generalized nonlinear complementarity problem over a closed convex cone, Journal of Applied Mathematics, 2012 (2012) · Zbl 1244.90228
[6] Andreani, R.; Friedlander, A.; Santos, S. A., On the resolution of the generalized nonlinear complementarity problem, SIAM Journal on Optimization, 12, 2, 303-321 (2002) · Zbl 1006.65068
[7] Facchinei, F.; Pang, J. S., Finite-Dimensional Variational Inequality and Complementarity Problems (2003), New York, NY, USA: Springer, New York, NY, USA
[8] Walras, L., Elements of Pure Economics (1954), London, UK: Allen and Unwin, London, UK · JFM 21.0229.03
[9] Solodov, M. V., Convergence rate analysis of iteractive algorithms for solving variational inquality problems, Mathematical Programming, 96, 3, 513-528 (2003) · Zbl 1042.49008
[10] Pang, J.-S., A posteriori error bounds for the linearly-constrained variational inequality problem, Mathematics of Operations Research, 12, 3, 474-484 (1987)
[11] Xiu, N. H.; Zhang, J. Z., Global projection-type error bounds for general variational inequalities, Journal of Optimization Theory and Applications, 112, 1, 213-228 (2002) · Zbl 1005.49004
[12] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis, viii+607 (1991), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0729.15001
[13] Hoffman, A. J., On approximate solutions of systems of linear inequalities, Journal of Research of the National Bureau of Standards, 49, 263-265 (1952)
[14] Wang, T.; Pang, J.-S., Global error bounds for convex quadratic inequality systems, Optimization, 31, 1, 1-12 (1994) · Zbl 0817.90078
[15] Noor, M. A., Merit functions for general variational inequalities, Journal of Mathematical Analysis and Applications, 316, 2, 736-752 (2006) · Zbl 1085.49011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.