×

Adaptive synchronization for two different stochastic chaotic systems with unknown parameters via a sliding mode controller. (English) Zbl 1291.93087

Summary: This paper investigates the problem of synchronization for two different stochastic chaotic systems with unknown parameters and uncertain terms. The main work of this paper consists of the following aspects. Firstly, based on the Lyapunov theory in stochastic differential equations and the theory of sliding mode control, we propose a simple sliding surface and discuss the occurrence of the sliding motion. Secondly, we design an adaptive sliding mode controller to realize the asymptotical synchronization in mean squares. Thirdly, we design an adaptive sliding mode controller to realize the almost surely synchronization. Finally, the designed adaptive sliding mode controllers are used to achieve synchronization between two pairs of different stochastic chaos systems (Lorenz-Chen and Chen-Lu) in the presence of the uncertainties and unknown parameters. Numerical simulations are given to demonstrate the robustness and efficiency of the proposed robust adaptive sliding mode controller.

MSC:

93B12 Variable structure systems
93E03 Stochastic systems in control theory (general)
34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations

References:

[1] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[2] Carroll, T. L.; Pecora, L. M., Synchronizing chaotic circuits, IEEE Transactions on Circuits and Systems, 38, 4, 453-456 (1991) · doi:10.1109/31.75404
[3] Kocarev, L.; Parlitz, U., General approach for chaotic synchronization with applications to communication, Physical Review Letters, 74, 25, 5028-5031 (1995) · doi:10.1103/PhysRevLett.74.5028
[4] Yu, Y.; Zhang, S., Adaptive backstepping synchronization of uncertain chaotic system, Chaos, Solitons and Fractals, 21, 3, 643-649 (2004) · Zbl 1062.34053 · doi:10.1016/j.chaos.2003.12.067
[5] Salarieh, H.; Shahrokhi, M., Adaptive synchronization of two different chaotic systems with time varying unknown parameters, Chaos, Solitons and Fractals, 37, 1, 125-136 (2008) · Zbl 1147.93397 · doi:10.1016/j.chaos.2006.08.038
[6] Konishi, K.; Hirai, M.; Kokame, H., Sliding mode control for a class of chaotic systems, Physics Letters, Section A, 245, 6, 511-517 (1998)
[7] Nazzal, J. M.; Natsheh, A. N., Chaos control using sliding-mode theory, Chaos, Solitons and Fractals, 33, 2, 695-702 (2007) · doi:10.1016/j.chaos.2006.01.071
[8] Alvarez-Gallegos, J., Nonlinear regulation of a Lorenz system by feedback linearization techniques, Dynamics and Control, 4, 3, 277-298 (1994) · Zbl 0825.93547 · doi:10.1007/BF01985075
[9] Alasty, A.; Salarieh, H., Nonlinear feedback control of chaotic pendulum in presence of saturation effect, Chaos, Solitons and Fractals, 31, 2, 292-304 (2007) · Zbl 1142.93342 · doi:10.1016/j.chaos.2005.10.004
[10] Alasty, A.; Salarieh, H., Controlling the chaos using fuzzy estimation of OGY and Pyragas controllers, Chaos, Solitons and Fractals, 26, 2, 379-392 (2005) · Zbl 1153.93431 · doi:10.1016/j.chaos.2004.12.034
[11] Luo, N.; de la Sen, M., State feedback sliding mode control of a class of uncertain time delay systems, IEE Proceedings D, 140, 4, 261-274 (1993) · Zbl 0786.93081
[12] Luo, N.; de la Sen, M.; Rodellar, J., Robust stabilization of a class of uncertain time delay systems in sliding mode, International Journal of Robust and Nonlinear Control, 7, 1, 59-74 (1997) · Zbl 0878.93055 · doi:10.1002/(SICI)1099-1239(199701)7:1<59::AID-RNC205>3.3.CO;2-O
[13] Pourmahmood, M.; Khanmohammadi, S.; Alizadeh, G., Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Communications in Nonlinear Science and Numerical Simulation, 16, 7, 2853-2868 (2011) · Zbl 1221.93131 · doi:10.1016/j.cnsns.2010.09.038
[14] Aghababa, M. P.; Khanmohammadi, S.; Alizadeh, G., Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied Mathematical Modelling, 35, 6, 3080-3091 (2011) · Zbl 1219.93023 · doi:10.1016/j.apm.2010.12.020
[15] Billings, L.; Bollt, E. M.; Schwartz, I. B., Phase-space transport of stochastic chaos in population dynamics of virus spread, Physical Review Letters, 88, 23, 2341011-2341014 (2002)
[16] Freeman, W. J., A proposed name for aperiodic brain activity: stochastic chaos, Neural Networks, 13, 1, 11-13 (2000) · doi:10.1016/S0893-6080(99)00093-3
[17] Mou, X. Z.; Zhou, W. N.; Pan, L.; Zhu, Q., Synchronization control of stochastically coupled neural networks with mixed time-delays, Proceedings of the Chinese Control and Decision Conference (CCDC ’09) · doi:10.1109/CCDC.2009.5192934
[18] Tang, Y.; Qiu, R.; Fang, J.-A.; Miao, Q.; Xia, M., Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Physics Letters A, 372, 24, 4425-4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[19] Yang, X. S.; Zhu, Q. X.; Huang, C. X., Lag stochastic synchronization of chaotic mixed time-delayed neural networks with uncertain parameters or perturbations, Neurocomputing, 74, 10, 1617-1625 (2011) · doi:10.1016/j.neucom.2011.01.010
[20] Wang, Z. Y.; Huang, L. H., Robust decentralized adaptive control for stochastic delayed Hopfield neural networks, Neurocomputing, 74, 3695-3699 (2011)
[21] Huang, C. X.; Chen, P.; He, Y.; Huang, L.; Tan, W., Almost sure exponential stability of delayed Hopfield neural networks, Applied Mathematics Letters, 21, 7, 701-705 (2008) · Zbl 1152.34372 · doi:10.1016/j.aml.2007.07.030
[22] Huang, C. X.; Cao, J. D., Almost sure exponential stability of stochastic cellular neural networks with unbounded distributed delays, Neurocomputing, 72, 13-15, 3352-3356 (2009) · doi:10.1016/j.neucom.2008.12.030
[23] Sun, Y. Z.; Ruan, J., Synchronization between two different chaotic systems with noise perturbation, Chinese Physics Letters, 19, 7 (2010) · doi:10.1088/1674-1056/19/7/070513
[24] Salarieh, H.; Alasty, A., Adaptive chaos synchronization in Chua’s systems with noisy parameters, Mathematics and Computers in Simulation, 79, 3, 233-241 (2008) · Zbl 1166.34029 · doi:10.1016/j.matcom.2007.11.007
[25] Salarieh, H.; Alasty, A., Control of stochastic chaos using sliding mode method, Journal of Computational and Applied Mathematics, 225, 1, 135-145 (2009) · Zbl 1162.65062 · doi:10.1016/j.cam.2008.07.032
[26] Mao, X., Stochastic Differential Equation and Application (1997), Chichester, UK: Horwood, Chichester, UK · Zbl 0874.60050
[27] Khasminskii, R. Z., Stochastic Stability of Differential Equations. Stochastic Stability of Differential Equations, Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, 7, xvi+344 (1980), Amsterdam, The Netherlands: Sijthoff & Noordhoff, Amsterdam, The Netherlands · Zbl 0441.60060
[28] Mao, X., A note on the LaSalle-type theorems for stochastic differential delay equations, Journal of Mathematical Analysis and Applications, 268, 1, 125-142 (2002) · Zbl 0996.60064 · doi:10.1006/jmaa.2001.7803
[29] Shen, Y.; Luo, Q.; Mao, X., The improved LaSalle-type theorems for stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 318, 1, 134-154 (2006) · Zbl 1090.60059 · doi:10.1016/j.jmaa.2005.05.026
[30] Chen, M.; Chen, W. H., Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems, Chaos, Solitons and Fractals, 41, 5, 2716-2724 (2009) · Zbl 1198.93155 · doi:10.1016/j.chaos.2008.10.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.