×

Finite time inverse optimal stabilization for stochastic nonlinear systems. (English) Zbl 1291.93244

Summary: This paper deals with finite time inverse optimal stabilization for stochastic nonlinear systems. A concept of the stochastic finite time control Lyapunov function (SFT-CLF) is presented, and a control law for finite time stabilization for the closed-loop system is obtained. Furthermore, a sufficient condition is developed for finite time inverse optimal stabilization in probability, and a control law is designed to ensure that the equilibrium of the closed-loop system is finite time inverse optimal stable. Finally, an example is given to illustrate the applications of theorems established in this paper.

MSC:

93D15 Stabilization of systems by feedback
93E15 Stochastic stability in control theory
93E20 Optimal stochastic control

References:

[1] Haimo, V. T., Finite time controllers, SIAM Journal on Control and Optimization, 24, 4, 760-770 (1986) · Zbl 0603.93005 · doi:10.1137/0324047
[2] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM Journal on Control and Optimization, 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[3] Bhat, S. P.; Bernstein, D. S., Finite-time stability of homogeneous systems, Proceedings of the American Control Conference · doi:10.1109/ACC.1997.609245
[4] Orlov, Y., Finite time stability and robust control synthesis of uncertain switched systems, SIAM Journal on Control and Optimization, 43, 751-766 (2005)
[5] Moulay, E.; Dambrine, M.; Yeganefar, N.; Perruquetti, W., Finite-time stability and stabilization of time-delay systems, Systems & Control Letters, 57, 7, 561-566 (2008) · Zbl 1140.93447 · doi:10.1016/j.sysconle.2007.12.002
[6] Nersesov, S. G.; Nataraj, C.; Avis, J. M., Design of finite-time stabilizing controllers for nonlinear dynamical systems, International Journal of Robust and Nonlinear Control, 19, 8, 900-918 (2009) · Zbl 1166.93013 · doi:10.1002/rnc.1359
[7] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43, 5, 678-682 (1998) · Zbl 0925.93821 · doi:10.1109/9.668834
[8] Hong, Y.; Huang, J.; Xu, Y., On an output feedback finite-time stabilization problem, IEEE Transactions on Automatic Control, 46, 2, 305-309 (2001) · Zbl 0992.93075 · doi:10.1109/9.905699
[9] Li, S.; Du, H.; Lin, X., Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47, 8, 1706-1712 (2011) · Zbl 1226.93014 · doi:10.1016/j.automatica.2011.02.045
[10] Du, H.; Li, S.; Qian, C., Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE Transactions on Automatic Control, 56, 11, 2711-2717 (2011) · Zbl 1368.70036 · doi:10.1109/TAC.2011.2159419
[11] Du, H. B.; Li, S. H., Finite-time attitude stabilization for a spacecraft using homogeneous method, Journal of Guidance, Control, and Dynamics, 35, 740-748 (2012)
[12] Moulay, E.; Perruquetti, W., Finite time stability and stabilization of a class of continuous systems, Journal of Mathematical Analysis and Applications, 323, 2, 1430-1443 (2006) · Zbl 1131.93043 · doi:10.1016/j.jmaa.2005.11.046
[13] Artstein, Z., Stabilization with relaxed controls, Nonlinear Analysis, 7, 11, 1163-1173 (1983) · Zbl 0525.93053 · doi:10.1016/0362-546X(83)90049-4
[14] Sontag, E. D., A Lyapunov-like characterization of asymptotic controllability, SIAM Journal on Control and Optimization, 21, 3, 462-471 (1983) · Zbl 0513.93047 · doi:10.1137/0321028
[15] Sontag, E. D., A “universal” construction of Artstein’s theorem on nonlinear stabilization, Systems & Control Letters, 13, 2, 117-123 (1989) · Zbl 0684.93063 · doi:10.1016/0167-6911(89)90028-5
[16] Florchinger, P., A universal formula for the stabilization of control stochastic differential equations, Stochastic Analysis and Applications, 11, 2, 155-162 (1993) · Zbl 0770.60058 · doi:10.1080/07362999308809308
[17] Chabour, R.; Oumoun, M., On a universal formula for the stabilization of control stochastic nonlinear systems, Stochastic Analysis and Applications, 17, 3, 359-368 (1999) · Zbl 0928.60039 · doi:10.1080/07362999908809606
[18] Chen, W.; Jiao, L. C., Finite-time stability theorem of stochastic nonlinear systems, Automatica, 46, 12, 2105-2108 (2010) · Zbl 1401.93213 · doi:10.1016/j.automatica.2010.08.009
[19] Chen, W.; Jiao, L. C., Authors’ reply to “Comments on ‘Finite-time stability theorem of stochastic nonlinear systems, Automatica, 46, 2105-2108 (2010) · Zbl 1220.93079 · doi:10.1016/j.automatica.2011.02.053
[20] Chen, W.; Jiao, L. C., Authors’ reply to “Comments on ‘Finite-time stability theorem of stochastic nonlinear systems”, Automatica, 47, 7, 1544-1545 (2011) · Zbl 1220.93079 · doi:10.1016/j.automatica.2011.02.053
[21] Freeman, R. A.; Kokotovic, P. V., Inverse optimality in robust stabilization, SIAM Journal on Control and Optimization, 34, 4, 1365-1391 (1996) · Zbl 0863.93075 · doi:10.1137/S0363012993258732
[22] Situ, R., Theory of Stochastic Differential Equations with Jumps and Applications. Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering (2005), New York, NY, USA: Springer, New York, NY, USA · Zbl 1070.60002
[23] Cai, X.; Liu, L.; Huang, J.; Zhang, W., Globally asymptotical stabilisation for a class of feedback linearisable differential inclusion systems, IET Control Theory & Applications, 5, 14, 1586-1596 (2011) · doi:10.1049/iet-cta.2010.0365
[24] Chen, P.; Hou, C. Z.; Feng, Y., Stochastic Mathematics (2008), Beijing, China: National Defence Industry Press, Beijing, China
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.