×

Identification of unknown parameters and orders via cuckoo search oriented statistically by differential evolution for noncommensurate fractional-order chaotic systems. (English) Zbl 1291.93306

Summary: In this paper, a non-Lyapunov novel approach is proposed to estimate the unknown parameters and orders together for noncommensurate and hyper fractional chaotic systems based on cuckoo search oriented statistically by the differential evolution (CSODE). Firstly, a novel Gaos’ mathematical model is proposed and analyzed in three submodels, not only for the unknown orders and parameters’ identification but also for systems’ reconstruction of fractional chaos systems with time delays or not. Then the problems of fractional-order chaos’ identification are converted into a multiple modal nonnegative functions’ minimization through a proper translation, which takes fractional-orders and parameters as its particular independent variables. And the objective is to find the best combinations of fractional-orders and systematic parameters of fractional order chaotic systems as special independent variables such that the objective function is minimized. Simulations are done to estimate a series of noncommensurate and hyper fractional chaotic systems with the new approaches based on CSODE, the cuckoo search, and Genetic Algorithm, respectively. The experiments’ results show that the proposed identification mechanism based on CSODE for fractional orders and parameters is a successful method for fractional-order chaotic systems, with the advantages of high precision and robustness.

MSC:

93E11 Filtering in stochastic control theory
34H10 Chaos control for problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Caponetto, R.; Fazzino, S., A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems, Communications in Nonlinear Science and Numerical Simulation, 18, 1, 22-27 (2013) · Zbl 1253.35199 · doi:10.1016/j.cnsns.2012.06.013
[2] Tavazoei, M. S.; Haeri, M., A necessary condition for double scroll attractor existence in fractional-order systems, Physics Letters A, 367, 1-2, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[3] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional lorenz system, Physical Review Letters, 91, 42 (2003) · doi:10.1103/PhysRevLett.91.034101
[4] Agrawal, S. K.; Srivastava, M.; Das, S., Synchronization of fractional order chaotic systems using active control method, Chaos, Solitons & Fractals, 45, 6, 737-752 (2012) · doi:10.1016/j.chaos.2012.02.004
[5] Yang, Q.; Zeng, C., Chaos in fractional conjugate Lorenz system and its scaling attractors, Communications in Nonlinear Science and Numerical Simulation, 15, 12, 4041-4051 (2010) · Zbl 1222.37037 · doi:10.1016/j.cnsns.2010.02.005
[6] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynamics, 29, 1-4, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[7] Tang, Y.; Zhang, X.; Hua, C.; Li, L.; Yang, Y., Parameter identification of commensurate fractional-order chaotic system via differential evolution, Physics Letters A, 376, 4, 457-464 (2012) · Zbl 1255.34061 · doi:10.1016/j.physleta.2011.12.008
[8] Yu, Y.; Li, H.-X.; Wang, S.; Yu, J., Dynamic analysis of a fractional-order Lorenz chaotic system, Chaos, Solitons & Fractals, 42, 2, 1181-1189 (2009) · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016
[9] Yuan, L.-G.; Yang, Q.-G., Parameter identification and synchronization of fractional-order chaotic systems, Communications in Nonlinear Science and Numerical Simulation, 17, 1, 305-316 (2012) · Zbl 1245.93039 · doi:10.1016/j.cnsns.2011.04.005
[10] Hu, J. B.; Xiao, J.; Zhao, L. D., Synchronizing an improper fractional Chen chaotic system, Journal of Shanghai University. Natural Science, 17, 6, 734-739 (2011) · Zbl 1265.34016
[11] Li, C.; Peng, G., Chaos in Chen’s system with a fractional order, Chaos, Solitons & Fractals, 22, 2, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[12] Li, C.; Chen, G., Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, 341, 1-4, 55-61 (2004) · doi:10.1016/j.physa.2004.04.113
[13] Deng, W.; Shulin, E.; Sun, D.; Wang, P.; Zhang, D.; Xu, W.; Chung, Y.-C.; Xie, S., Fabrication of vertical coupled polymer microring resonator, ICO20: Optical Communication · doi:10.1117/12.667062
[14] Song, L.; Yang, J.; Xu, S., Chaos synchronization for a class of nonlinear oscillators with fractional order, Nonlinear Analysis: Theory, Methods and Applications, 72, 5, 2326-2336 (2010) · Zbl 1187.34066 · doi:10.1016/j.na.2009.10.033
[15] Zhang, R.-X.; Yang, Y.; Yang, S.-P., Adaptive synchronization of the fractional-order unified chaotic system, Acta Physica Sinica, 58, 9, 6039-6044 (2009) · Zbl 1212.37058
[16] Deng, W. H.; Li, C. P., Chaos synchronization of the fractional Lü system, Physica A, 353, 1-4, 61-72 (2005) · doi:10.1016/j.physa.2005.01.021
[17] Deng, H.; Li, T.; Wang, Q.; Li, H., A fractional-order hyperchaotic system and its synchronization, Chaos, Solitons & Fractals, 41, 2, 962-969 (2009) · Zbl 1198.34115 · doi:10.1016/j.chaos.2008.04.034
[18] Li, C. P.; Deng, W. H.; Xu, D., Chaos synchronization of the Chua system with a fractional order, Physica A, 360, 2, 171-185 (2006) · doi:10.1016/j.physa.2005.06.078
[19] Deng, W.; Lü, J., Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system, Physics Letters A, 369, 5-6, 438-443 (2007) · Zbl 1209.37032 · doi:10.1016/j.physleta.2007.04.112
[20] Odibat, Z. M.; Corson, N.; Aziz-Alaoui, M. A.; Bertelle, C., Synchronization of chaotic fractional-order systems via linear control, International Journal of Bifurcation and Chaos, 20, 1, 81-97 (2010) · Zbl 1183.34095 · doi:10.1142/S0218127410025429
[21] Odibat, Z., A note on phase synchronization in coupled chaotic fractional order systems, Nonlinear Analysis: Real World Applications, 13, 2, 779-789 (2012) · Zbl 1238.34121 · doi:10.1016/j.nonrwa.2011.08.016
[22] Wu, X.; Lai, D.; Lu, H., Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, Nonlinear Dynamics, 69, 1-2, 667-683 (2012) · Zbl 1258.34130 · doi:10.1007/s11071-011-0295-9
[23] Sun, K.; Sprott, J. C., Bifurcations of fractional-order diffusionless lorenz system, Electronic Journal of Theoretical Physics, 6, 22, 123-134 (2009)
[24] Wu, X.-J.; Shen, S.-L., Chaos in the fractional-order Lorenz system, International Journal of Computer Mathematics, 86, 7, 1274-1282 (2009) · Zbl 1169.65115 · doi:10.1080/00207160701864426
[25] Kaslik, E.; Sivasundaram, S., Analytical and numerical methods for the stability analysis of linear fractional delay differential equations, Journal of Computational and Applied Mathematics, 236, 16, 4027-4041 (2012) · Zbl 1250.65099 · doi:10.1016/j.cam.2012.03.010
[26] Bhalekar, S.; Daftardar-Gejji, V., Fractional ordered Liu system with time-delay, Communications in Nonlinear Science and Numerical Simulation, 15, 8, 2178-2191 (2010) · Zbl 1222.34005 · doi:10.1016/j.cnsns.2009.08.015
[27] Lu, J. G.; Chen, G., A note on the fractional-order Chen system, Chaos, Solitons & Fractals, 27, 3, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[28] Al-Assaf, Y.; El-Khazali, R.; Ahmad, W., Identification of fractional chaotic system parameters, Chaos, Solitons & Fractals, 22, 4, 897-905 (2004) · Zbl 1129.93492 · doi:10.1016/j.chaos.2004.03.007
[29] Doha, E. H.; Bhrawy, A. H.; Ezz-Eldien, S. S., A new Jacobi operational matrix: an application for solving fractional differential equations, Applied Mathematical Modelling, 36, 10, 4931-4943 (2012) · Zbl 1252.34019 · doi:10.1016/j.apm.2011.12.031
[30] Si, G.; Sun, Z.; Zhang, Y.; Chen, W., Projective synchronization of different fractional-order chaotic systems with non-identical orders, Nonlinear Analysis: Real World Applications, 13, 4, 1761-1771 (2012) · Zbl 1257.34040 · doi:10.1016/j.nonrwa.2011.12.006
[31] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, Journal of Mathematical Analysis and Applications, 265, 2, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
[32] Deng, W.; Li, C.; Lü, J., Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynamics, 48, 4, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[33] Tavazoei, M. S.; Haeri, M., Chaotic attractors in incommensurate fractional order systems, Physica D, 237, 20, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[34] Si, G.; Sun, Z.; Zhang, H.; Zhang, Y., Parameter estimation and topology identification of uncertain fractional order complex networks, CommuNications in Nonlinear Science and Numerical Simulation, 17, 12, 5158-5171 (2012) · Zbl 1263.35218 · doi:10.1016/j.cnsns.2012.05.005
[35] Si, G.; Sun, Z.; Zhang, H.; Zhang, Y., Parameter estimation and topology identification of uncertain fractional order complex networks, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 5158-5171 (2012) · Zbl 1263.35218 · doi:10.1016/j.cnsns.2012.05.005
[36] Gao, F.; Fei, F.-X.; Lee, X.-J.; Tong, H.-Q.; Deng, Y.-F.; Zhao, H.-L., Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution, Expert Systems with Applications, 41, 4(2), 1915-1927 (2014) · doi:10.1016/j.eswa.2013.08.087
[37] Publications, I., Cuckoo Search via Levy Ights (2009)
[38] Yang, X.-S.; Deb, S., Engineering optimisation by cuckoo search, International Journal of Mathematical Modelling and Numerical Optimisation, 1, 4, 330-343 (2010) · Zbl 1279.90204 · doi:10.1504/IJMMNO.2010.035430
[39] Yang, X.-S.; Deb, S., Multiobjective cuckoo search for design optimization, Computers & Operations Research, 40, 6, 1616-1624 (2013) · Zbl 1348.90650 · doi:10.1016/j.cor.2011.09.026
[40] Li, C.; Tao, C., On the fractional Adams method, Computers and Mathematics with Applications, 58, 8, 1573-1588 (2009) · Zbl 1189.65142 · doi:10.1016/j.camwa.2009.07.050
[41] Diethelm, K., An efficient parallel algorithm for the numerical solution of fractional differential equations, Fractional Calculus and Applied Analysis, 14, 3, 475-490 (2011) · Zbl 1273.65101 · doi:10.2478/s13540-011-0029-1
[42] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 1092.45003
[43] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, xvi+366 (1993), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0789.26002
[44] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications, xxxvi+976 (1993), Yverdon, Switzerland: Gordon and Breach Science Publishers, Yverdon, Switzerland · Zbl 0818.26003
[45] Oldham, K. B.; Spanier, J., The Fractional Calculus. The Fractional Calculus, Mathematics in Science and Engineering, 111, xiii+234 (1974), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0292.26011
[46] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Mathematics in Science and Engineering, 198, xxiv+340 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[47] Petráš, I., Fractional-order chaotic systems, Fractional-Order Nonlinear Systems. Fractional-Order Nonlinear Systems, Nonlinear Physical Science, 103-184 (2011), Berlin, Germany: Springer, Berlin, Germany · Zbl 1228.34002 · doi:10.1007/978-3-642-18101-6_5
[48] Petráš, I., Fractional calculus, Nonlinear Physica, 7-42 (2011), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-18101-6_2
[49] Koza, J., Genetic Programming: On the Programming of Computers by Means of Natural Selection. Genetic Programming: On the Programming of Computers by Means of Natural Selection, Complex Adaptive Systems (1992), Cambridge, MA, USA: MIT Press, Cambridge, MA, USA · Zbl 0850.68161
[50] Koza, J., Genetic Programming II: Automatic Discovery of Reusable Programs (1994), MIT Press · Zbl 0850.68160
[51] Poli, R.; Langdon, W.; McPhee, N., A Field Guide to Genetic Programming (2008), Essex, UK: Lulu Enterprises, Essex, UK
[52] Gandomi, A. H.; Alavi, A. H., A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems, Neural Computing & Applications, 21, 1, 171-187 (2012) · doi:10.1007/s00521-011-0734-z
[53] Gandomi, A. H.; Alavi, A. H., A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems, Neural Computing & Applications, 21, 1, 189-201 (2012) · doi:10.1007/s00521-011-0735-y
[54] Ikeda, Y., Estimation of chaotic ordinary differential equations by coevolutional genetic programming, Electronics and Communications in Japan, Part III, 86, 2, 1-12 (2003) · doi:10.1002/ecjc.10057
[55] Kirstukas, S. J.; Bryden, K. M.; Ashlock, D. A., A hybrid genetic programming approach for the analytical solution of differential equations, International Journal of General Systems, 34, 3, 279-299 (2005) · Zbl 1078.68751 · doi:10.1080/03081070500065676
[56] Varadan, V.; Leung, H., Chaotic system reconstruction from noisy time series measurements using improved least squares genetic programming, IEEE International Symposium on Circuits and Systems (ISCAS ’02)
[57] Zhang, W.; Wu, Z.-M.; Yang, G.-K., Genetic programming-based chaotic time series modeling, Journal of Zhejiang University: Science, 5, 11, 1432-1439 (2004) · doi:10.1631/jzus.2004.1432
[58] Zhang, W.; Yang, G.-K.; Wu, Z.-M., Genetic programming-based modeling on chaotic time series, Proceedings of International Conference on Machine Learning and Cybernetics
[59] Varadan, V.; Leung, H., Reconstruction of polynomial systems from noisy time-series measurements using genetic programming, IEEE Transactions on Industrial Electronics, 48, 4, 742-748 (2001) · doi:10.1109/41.937405
[60] Zelinka, I.; Raidl, A., Evolutionary reconstruction of chaotic systems, Studies in Computational Intelligence, 267, 265-291 (2010), Springer · Zbl 1186.68550 · doi:10.1007/978-3-642-10707-8_8
[61] Zelinka, I.; Davendra, D.; Senkerik, R.; Jasek, R., An investigation on evolutionary identification of continuous chaotic systems, Proceedings of the 4th Global Conference on Power Control and Optimization · doi:10.1063/1.3592478
[62] Zelinka, I.; Chadli, M.; Davendra, D.; Senkerik, R.; Jasek, R., An investigation on evolutionary reconstruction of continuous chaotic systems, Mathematical and Computer Modelling, 57, 1-2, 2-15 (2011) · Zbl 1305.37040 · doi:10.1016/j.mcm.2011.06.034
[63] Gao, F.; Lee, J.-J.; Li, Z.; Tong, H.; Lü, X., Parameter estimation for chaotic system with initial random noises by particle swarm optimization, Chaos, Solitons & Fractals, 42, 2, 1286-1291 (2009) · Zbl 1198.93016 · doi:10.1016/j.chaos.2009.03.074
[64] Gao, F.; Qi, Y.; Balasingham, I.; Yin, Q.; Gao, H., A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises, Expert Systems with Applications, 39, 2, 1779-1783 (2012) · doi:10.1016/j.eswa.2011.08.076
[65] Guan, X.-P.; Peng, H.-P.; Li, L.-X.; Wang, Y.-Q., Parameters identification and control of Lorenz chaotic system, Acta Physica Sinica, 50, 1, 29 (2001)
[66] Parlitz, U., Estimating model parameters from time series by autosynchronization, Physical Review Letters, 76, 8, 1232-1235 (1996)
[67] Li, L.; Yang, Y.; Peng, H.; Wang, X., Parameters identification of chaotic systems via chaotic ant swarm, Chaos, Solitons & Fractals, 28, 5, 1204-1211 (2006) · Zbl 1121.90426 · doi:10.1016/j.chaos.2005.04.110
[68] Chang, W.-D., Parameter identification of Chen and Lü systems: a differential evolution approach, Chaos, Solitons & Fractals, 32, 4, 1469-1476 (2007) · Zbl 1129.93022 · doi:10.1016/j.chaos.2005.11.067
[69] Chang, J.-F.; Yang, Y.-S.; Liao, T.-L.; Yan, J.-J., Parameter identification of chaotic systems using evolutionary programming approach, Expert Systems with Applications, 35, 4, 2074-2079 (2008) · doi:10.1016/j.eswa.2007.09.021
[70] Gao, F.; Li, Z.-Q.; Tong, H.-Q., Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization, Chinese Physics B, 17, 4, 1196-1201 (2008) · doi:10.1088/1674-1056/17/4/008
[71] Gao, F.; Tong, H.-Q., Parameter estimation for chaotic system based on particle swarm optimization, Acta Physica Sinica, 55, 2, 577-582 (2006)
[72] Shen, L.; Wang, M., Robust synchronization and parameter identification on a class of uncertain chaotic systems, Chaos, Solitons & Fractals, 38, 1, 106-111 (2008) · doi:10.1016/j.chaos.2006.10.042
[73] Yang, K.; Maginu, K.; Nomura, H., Parameters identification of chaotic systems by quantum-behaved particle swarm optimization, International Journal of Computer Mathematics, 86, 12, 2225-2235 (2009) · Zbl 1181.65103 · doi:10.1080/00207160903029802
[74] Gao, F.; Qi, Y.; Yin, Q.; Xiao, J., Solving problems in chaos control though an differential evolution algorithm with region zooming, Applied Mechanics and Materials, 110-116, 5048-5056 (2012) · doi:10.4028/www.scientific.net/AMM.110-116.5048
[75] Gao, F.; Fei, F.-X.; Xu, Q.; Deng, Y.-F.; Qi, Y.-B.; Balasingham, I., A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems, Applied Mathematics and Computation, 219, 2, 552-568 (2012) · Zbl 1288.34068 · doi:10.1016/j.amc.2012.06.040
[76] Lorénz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 2, 130-141 (1963) · Zbl 1417.37129
[77] Lu, J. G., Chaotic dynamics of the fractional-order Lü system and its synchronization, Physics Letters A, 354, 4, 305-311 (2006) · doi:10.1016/j.physleta.2006.01.068
[78] Li, C.; Chen, G., Chaos in the fractional order Chen system and its control, Chaos, Solitons & Fractals, 22, 3, 549-554 (2004) · Zbl 1069.37025 · doi:10.1016/j.chaos.2004.02.035
[79] Storn, R.; Price, K., Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 4, 341-359 (1997) · Zbl 0888.90135
[80] Gao, F.; Tong, H., Computing two linchpins of topological degree by a novel differential evolution algorithm, International Journal of Computational Intelligence and Applications, 5, 3, 335-350 (2005) · Zbl 1161.65328
[81] Gao, F., Computing unstable Period orbits of discrete chaotic system though differential evolutionary algorithms basing on elite subspace, System Engineering Theory and Practice, 25, 4, 96-102 (2005)
[82] Chiang, C.-W.; Lee, W.-P.; Heh, J.-S., A 2-Opt based differential evolution for global optimization, Applied Soft Computing Journal, 10, 4, 1200-1207 (2010) · doi:10.1016/j.asoc.2010.05.012
[83] Price, K. V.; Storn, R. M.; Lampinen, J. A., Differential Evolution: A Practical Approach to Global Optimization. Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, xx+538 (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1186.90004
[84] Lu, J. G., Chaotic dynamics and synchronization of fractional-order Arneodo’s systems, Chaos, Solitons & Fractals, 26, 4, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[85] Lu, J.-G., Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems, Chinese Physics, 14, 8, 1517-1521 (2005) · doi:10.1088/1009-1963/14/8/007
[86] Petráš, I., A note on the fractional-order Chua’s system, Chaos, Solitons & Fractals, 38, 1, 140-147 (2008) · doi:10.1016/j.chaos.2006.10.054
[87] Zhao, L.-D.; Hu, J.-B.; Liu, X.-H., Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters, Acta Physica Sinica, 59, 4, 2305-2309 (2010)
[88] Min, F.-H.; Yu, Y.; Ge, C.-J., Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system, Acta Physica Sinica, 58, 3, 1456-1461 (2009) · Zbl 1199.37084
[89] Liu, C.-X., A hyperchaotic system and its fractional order circuit simulation, Acta Physica Sinica, 56, 12, 6865-6873 (2007) · Zbl 1150.37337
[90] Li, D.; Deng, L.-M.; Du, Y.-X.; Yang, Y.-Y., Synchronization for fractional order hyperchaotic chen system and fractional order hyperchaotic rössler system with different structure, Acta Physica Sinica, 61, 5 (2012) · Zbl 1274.93123
[91] Zhang, R.-X.; Yang, S.-P., Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems, Chinese Physics B, 21, 3 (2012) · doi:10.1088/1674-1056/21/3/030505
[92] Dadras, S.; Momeni, H. R.; Qi, G.; Wang, Z.-L., Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form, Nonlinear Dynamics, 67, 2, 1161-1173 (2012) · Zbl 1245.34054 · doi:10.1007/s11071-011-0060-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.