Gao, Fangzheng; Yuan, Fushun; Zhang, Jian; Wu, Yuqiang Further result on finite-time stabilization of stochastic nonholonomic systems. (English) Zbl 1291.93315 Abstr. Appl. Anal. 2013, Article ID 439482, 8 p. (2013). Summary: This paper further investigates the problem of finite-time state feedback stabilization for a class of stochastic nonholonomic systems in chained form. Compared with the existing literature, the stochastic nonholonomic systems under investigation have more uncertainties, such as the \(x_0\)-subsystem contains stochastic disturbance. This renders the existing finite-time control methods highly difficult to the control problem of the systems or even inapplicable. In this paper, by extending adding a power integrator design method to a stochastic system and by skillfully constructing \(C^2\) Lyapunov function, a novel switching control strategy is proposed, which renders that the states of closed-loop system are almost surely regulated to zero in a finite time. A simulation example is provided to demonstrate the effectiveness of the theoretical results. Cited in 3 Documents MSC: 93E15 Stochastic stability in control theory 93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory 93D15 Stabilization of systems by feedback × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Brockett, R. W.; Brockett, R. W.; Millman, R. S.; Sussmann, H. J., Asymptotic stability andfeed back stabilization, Differential Geometric Control Theory, 2961-2963 (1983) [2] Astolfi, A., Discontinuous control of nonholonomic systems, Systems & Control Letters, 27, 1, 37-45 (1996) · Zbl 0877.93107 · doi:10.1016/0167-6911(95)00041-0 [3] Xu, W. L.; Huo, W., Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator, Systems & Control Letters, 41, 4, 225-235 (2000) · Zbl 0980.93067 · doi:10.1016/S0167-6911(00)00057-8 [4] Murray, R. M.; Sastry, S. S., Nonholonomic motion planning: steering using sinusoids, IEEE Transactions on Automatic Control, 38, 5, 700-716 (1993) · Zbl 0800.93840 · doi:10.1109/9.277235 [5] Jiang, Z. P., Iterative design of time-varying stabilizers for multi-input systems in chained form, Systems & Control Letters, 28, 5, 255-262 (1996) · Zbl 0866.93084 · doi:10.1016/0167-6911(96)00029-1 [6] Tian, Y. P.; Li, S., Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control, Automatica, 38, 8, 1139-1146 (2002) · Zbl 1003.93039 · doi:10.1016/S0005-1098(01)00303-X [7] Kolmanovsky, I.; McClamroch, N. H., Hybrid feedback laws for a class of cascade nonlinear control systems, IEEE Transactions on Automatic Control, 41, 9, 1271-1282 (1996) · Zbl 0862.93048 · doi:10.1109/9.536497 [8] Jiang, Z. P., Robust exponential regulation of nonholonomic systems with uncertainties, Automatica, 36, 2, 189-209 (2000) · Zbl 0952.93057 · doi:10.1016/S0005-1098(99)00115-6 [9] Xi, Z.; Feng, G.; Jiang, Z. P.; Cheng, D., A switching algorithm for global exponential stabilization of uncertain chained systems, IEEE Transactions on Automatic Control, 48, 10, 1793-1798 (2003) · Zbl 1364.93674 · doi:10.1109/TAC.2003.817937 [10] Ge, S. S.; Wang, Z.; Lee, T. H., Adaptive stabilization of uncertain nonholonomic systems by state and output feedback, Automatica, 39, 8, 1451-1460 (2003) · Zbl 1038.93079 · doi:10.1016/S0005-1098(03)00119-5 [11] Liu, Y. G.; Zhang, J. F., Output-feedback adaptive stabilization control design for non-holonomic systems with strong non-linear drifts, International Journal of Control, 78, 7, 474-490 (2005) · Zbl 1115.93082 · doi:10.1080/00207170500080280 [12] Xi, Z.; Feng, G.; Jiang, Z. P.; Cheng, D., Output feedback exponential stabilization of uncertain chained systems, Journal of the Franklin Institute, 344, 1, 36-57 (2007) · Zbl 1119.93057 · doi:10.1016/j.jfranklin.2005.10.002 [13] Zheng, X.; Wu, Y., Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts, Nonlinear Analysis, 70, 2, 904-920 (2009) · Zbl 1152.93048 · doi:10.1016/j.na.2008.01.037 [14] Gao, F.; Yuan, F.; Yao, H., Robust adaptive control for nonholonomic systems with nonlinear parameterization, Nonlinear Analysis, 11, 4, 3242-3250 (2010) · Zbl 1214.93038 · doi:10.1016/j.nonrwa.2009.11.019 [15] Liang, Z. Y.; Wang, C. L., Robust stabilization of nonholonomic chained form systems with uncertainties, Acta Automatica Sinica, 37, 2, 129-142 (2011) · Zbl 1240.70015 · doi:10.3724/SP.J.1004.2011.00129 [16] Wang, J.; Gao, H.; Li, H., Adaptive robust control of nonholonomic systems with stochastic disturbances, Science in China F, 49, 2, 189-207 (2006) · Zbl 1117.93027 · doi:10.1007/s11432-006-0189-5 [17] Liu, Y. L.; Wu, Y. Q., Output feedback control for stochastic nonholonomic systems with growth rate restriction, Asian Journal of Control, 13, 1, 177-185 (2011) · Zbl 1248.93137 · doi:10.1002/asjc.230 [18] Zhao, Y.; Yu, J.; Wu, Y., State-feedback stabilization for a class of more general high order stochastic nonholonomic systems, International Journal of Adaptive Control and Signal Processing, 25, 8, 687-706 (2011) · Zbl 1227.93100 · doi:10.1002/acs.1233 [19] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control, 43, 5, 678-682 (1998) · Zbl 0925.93821 · doi:10.1109/9.668834 [20] Hong, Y.; Wang, J.; Xi, Z., Stabilization of uncertain chained form systems within finite settling time, IEEE Transactions on Automatic Control, 50, 9, 1379-1384 (2005) · Zbl 1365.93444 · doi:10.1109/TAC.2005.854620 [21] Wang, J.; Zhang, G.; Li, H., Adaptive control of uncertain nonholonomic systems in finite time, Kybernetika, 45, 5, 809-824 (2009) · Zbl 1190.93086 [22] Yin, J.; Khoo, S.; Man, Z.; Yu, X., Finite-time stability and instability of stochastic nonlinear systems, Automatica, 47, 12, 2671-2677 (2011) · Zbl 1235.93254 · doi:10.1016/j.automatica.2011.08.050 [23] Gao, F.; Yuan, F., Finite-time stabilization of stochastic nonholonomic systems and its application to mobile robot, Abstract and Applied Analysis (2012) · Zbl 1253.93087 [24] Huang, X.; Lin, W.; Yang, B., Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, 41, 5, 881-888 (2005) · Zbl 1098.93032 · doi:10.1016/j.automatica.2004.11.036 [25] Li, J.; Qian, C.; Ding, S., Global finite-time stabilisation by output feedback for a class of uncertain nonlinear systems, International Journal of Control, 83, 11, 2241-2252 (2010) · Zbl 1210.93064 · doi:10.1080/00207179.2010.511658 [26] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 46, 7, 1061-1079 (2001) · Zbl 1012.93053 · doi:10.1109/9.935058 [27] Chen, W.; Jiao, L. C., Finite-time stability theorem of stochastic nonlinear systems, Automatica, 46, 12, 2105-2108 (2010) · Zbl 1401.93213 · doi:10.1016/j.automatica.2010.08.009 [28] Chen, W.; Jiao, L. C., Authors’ reply to comments on “Finite-time stability theorem of stochastic nonlinear systems” [Automatica 46 (2010) 2105-2108], Automatica, 47, 7, 1544-1545 (2011) · Zbl 1220.93079 · doi:10.1016/j.automatica.2011.02.053 [29] Situ, R., Thoery of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analysis Techniques with Applications to Engineering (2005), New York, NY, USA: Springer, New York, NY, USA · Zbl 1070.60002 [30] Liu, H. J.; Mu, X. W., A converse lyapunov theorem for stochastic finite-time stability, Proceedings of the 30th Chinese Control Conference [31] Polendo, J.; Qian, C., A generalized homogeneous domination approach for global stabilization of inherently nonlinear systems via output feedback, International Journal of Robust and Nonlinear Control, 17, 7, 605-629 (2007) · Zbl 1113.93087 · doi:10.1002/rnc.1139 [32] Yang, B.; Lin, W., Nonsmooth output feedback design with a dynamic gain for uncertain systems with strong nonlinearity, Proceedings of the 46th IEEE Conference on Decision and Control (CDC ’07) · doi:10.1109/CDC.2007.4434846 [33] Li, W.; Xie, X. J.; Zhang, S., Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions, SIAM Journal on Control and Optimization, 49, 3, 1262-1282 (2011) · Zbl 1228.93101 · doi:10.1137/100798259 [34] Qian, C.; Lin, W., Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, Systems & Control Letters, 42, 3, 185-200 (2001) · Zbl 0974.93050 · doi:10.1016/S0167-6911(00)00089-X This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.