Wang, Xiang-Yang; Liu, Yang-Cheng; Yang, Hong-Ying An efficient remote sensing image denoising method in extended discrete shearlet domain. (English) Zbl 1291.94018 J. Math. Imaging Vis. 49, No. 2, 434-453 (2014). Summary: Denoising of images is one of the most basic tasks of image processing. It is a challenging work to design a edge-preserving image denoising scheme. Extended discrete Shearlet transform (extended DST) is an effective multi-scale and multi-direction analysis method, it not only can exactly compute the shearlet coefficients based on a multiresolution analysis, but also can provide nearly optimal approximation for a piecewise smooth function. Based on extended DST, an image denoising using fuzzy support vector machine (FSVM) is proposed. Firstly, the noisy image is decomposed into different subbands of frequency and orientation responses using the extended DST. Secondly, the feature vector for a pixel in a noisy image is formed by the spatial regularity in extended DST domain, and the FSVM model is obtained by training. Then the extended DST detail coefficients are divided into two classes (edge-related coefficients and noise-related ones) by FSVM training model. Finally, the detail subbands of extended DST coefficients are denoised by using the adaptive Bayesian threshold. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art denoising techniques. Especially, the proposed method can preserve edges very well while removing noise. Cited in 1 Document MSC: 94A08 Image processing (compression, reconstruction, etc.) in information and communication theory 68U10 Computing methodologies for image processing 94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory) Keywords:image denoising; extended discrete shearlet transform; fuzzy support vector machine; adaptive Bayesian threshold PDF BibTeX XML Cite \textit{X.-Y. Wang} et al., J. Math. Imaging Vis. 49, No. 2, 434--453 (2014; Zbl 1291.94018) Full Text: DOI References: [1] Vijaya Arjunan, R.; Vijaya Kumar, V., Survey analysis of various image denoising techniques—a perspective view, Kottayam, India [2] Chatterjee, P., Milanfa, P.: Patch-based near-optimal image denoising. IEEE Trans. Image Process. 21(4), 1635-1649 (2012) · Zbl 1373.94069 [3] Liu, C., Szeliski, R., Kang, S.B.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299-3142 (2008) [4] Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process. 17(7), 1057-1092 (2008) [5] Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 290-530 (2005) · Zbl 1108.94004 [6] Pardo, A.: Analysis of non-local image denoising methods. Pattern Recognit. Lett. 32(16), 2145-2149 (2011) [7] Van, D.V.D., Kocher, M.: SURE-based non-local means. IEEE Signal Process. Lett. 16(11), 973-976 (2009) [8] Coupe, P., Manjón, J.V., Robles, M.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Process. 6(5), 558-568 (2012) [9] Van, D.V.D., Kocher, M.: Nonlocal means with dimensionality reduction and SURE-based parameter selection. IEEE Trans. Image Process. 20(9), 2683-2690 (2011) · Zbl 1373.62298 [10] Rehman, A.; Wang, Z., SSIM-based non-local means image denoising, 217-220 (2011) [11] Salmon, J., Strozecki, Y.: Patch reprojections for non-local methods. Signal Process. 92(2), 477-489 (2012) [12] Ji, Z., Chena, Q., Suna, Q.-S., et al.: A moment-based nonlocal-means algorithm for image denoising. Inf. Process. Lett. 109(23-24), 1238-1244 (2009) · Zbl 1206.68333 [13] Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080-2095 (2007) [14] Salmon, J.: On two parameters for denoising with non-local means. IEEE Signal Process. Lett. 17(3), 269-272 (2010) [15] Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1-32 (2010) · Zbl 1477.94014 [16] Roth, S.; Black, M. J., Steerable random fields, 1-8 (2007) [17] Cao, Y., Luo, Y., Yang, S.: Image denoising based on hierarchical Markov random field. Pattern Recognit. Lett. 32(2), 368-374 (2011) [18] Chen, S., Liu, M., Zhang, W.: Edge preserving image denoising with a closed form solution. Pattern Recognit. 46(3), 976-988 (2013) · Zbl 1254.68273 [19] Gao, Q.; Roth, S., How well do filter-based MRFs model natural images, 62-72 (2012), Berlin [20] Ho, J.; Hwang, W. L., Image denoising using wavelet Bayesian network models, 1105-1108 (2012) [21] Li, Y. P.; Huttenlocher, D. P., Sparse long-range random field and its application to image denoising, No. 5304, 344-357 (2008) [22] Barbu, A., Learning real-time MRF inference for image denoising, 1574-1581 (2009) [23] Tomasi, C.; Manduchi, R., Bilateral filtering for gray and color images, Washington, DC [24] Zhang, M., Gunturk, B.K.: Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 17(12), 2324-2333 (2008) · Zbl 1371.94455 [25] Liu, G.; Ma, W.; Ma, Y., Combination of curvelet threshold with bilateral filtering for image denoising, 469-474 (2012) [26] Yu, H., Zhao, L., Wang, H.: Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain. IEEE Trans. Image Process. 18(10), 2364-2369 (2009) · Zbl 1371.94443 [27] Lin, C.H., Tsai, J.S., Chiu, C.T.: Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Trans. Image Process. 19(9), 2307-2320 (2010) · Zbl 1371.94234 [28] Zhang, K., Lafruit, G., Lauwereins, R.: Constant time joint bilateral filtering using joint integral histograms. IEEE Trans. Image Process. 21(9), 4309-4314 (2012) · Zbl 1373.94484 [29] Tian, C., Krishnan, S.: Accelerated bilateral filtering with block skipping. IEEE Signal Process. Lett. 20(5), 419 (2013) [30] Hu, J.; Li, S., Fusion of panchromatic and multispectral images using multiscale dual bilateral filter, 1489-1492 (2011) [31] Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for Poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724-1741 (2009) · Zbl 1371.94223 [32] Fathi, A., Naghsh-Nilchi, A.R.: Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Trans. Image Process. 21(9), 3981-3990 (2012) · Zbl 1373.94116 [33] Rabbani, H., Gazor, S.: Image denoising employing local mixture models in sparse domains. IET Image Process. 4(5), 413-428 (2010) [34] Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481-2499 (2012) · Zbl 1373.94471 [35] Yin, S., Cao, L., Ling, Y.: Image denoising with anisotropic bivariate shrinkage. Signal Process. 91(8), 2078-2090 (2011) · Zbl 1217.94023 [36] Chen, G., Zhu, W.P., Xie, W.: Wavelet-based image denoising using three scales of dependency. IET Image Process. 6(6), 756-760 (2012) [37] Peleg, T., Eldar, Y.C., Elad, M.: Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans. Signal Process. 60(5), 2286-2303 (2012) · Zbl 1393.94704 [38] Dong, W.; Wu, X.; Shi, G., Context-based bias removal of statistical models of wavelet coefficients for image denoising, 3841-3844 (2009) [39] Strang, G.: Introduction to Applied Math. Wellesley-Cambridge Press, Wellesley (1986) · Zbl 0618.00015 [40] Chen, D., MacLachlan, S., Kilmer, M.: Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising. SIAM J. Sci. Comput. 33(5), 2972-2994 (2011) · Zbl 1241.94008 [41] Liu, F., Liu, J.: Anisotropic diffusion for image denoising based on diffusion tensors. J. Vis. Commun. Image Represent. 23(3), 516-521 (2012) [42] Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369-1381 (2013) · Zbl 1275.32020 [43] Hajiaboli, M.R.: An anisotropic fourth-order diffusion filter for image noise removal. Int. J. Comput. Vis. 92(2), 177-191 (2011) · Zbl 1235.94024 [44] Qiu, Z., Yang, L., Lu, W.: A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges. Pattern Recognit. Lett. 33(3), 319-330 (2012) [45] Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265-2274 (2009) · Zbl 1371.94201 [46] Li, H.C., Fan, P.Z., Khan, M.K.: Context-adaptive anisotropic diffusion for image denoising. Electron. Lett. 48(14), 827-829 (2012) [47] Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998) · Zbl 0935.62007 [48] Wu, D., Peng, D., Tian, J.: Image denoising using local adaptive least squares support vector regression. Geo-Spat. Inf. Sci. 10(3), 196-199 (2007) [49] Lin, T. C.; Yeh, C. T.; Liu, M. K., Application of SVM-based filter using LMS learning algorithm for image denoising, No. 6444, 82-90 (2010) [50] Zhang, S.; Chen, Y., Image denoising based on wavelet support vector machine, 1809-1812 (2006) · Zbl 1096.68722 [51] Lin, T.C.: Decision-based filter based on SVM and evidence theory for image noise removal. Neural Comput. Appl. 21(4), 695-703 (2012) [52] Li, M., Yang, J., Su, Z.Y.: Support vector regression based color image restoration in YUV color space. J. Shanghai Jiaotong Univ. 15(1), 31-35 (2010) [53] Zhang, G. D.; Yang, X. H.; Xu, H., Image denoising based on support vector machine, 1-4 (2012) [54] Lin, C., Wang, S.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464-471 (2002) [55] Wang, Y., Wang, S., Lai, K.K.: A new fuzzy support vector machine to evaluate credit risk. IEEE Trans. Fuzzy Syst. 13(6), 820-831 (2005) [56] Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166-1180 (2010) · Zbl 1371.94233 [57] Firouzmanesh, A.; Boulanger, P., Image de-blurring using shearlets, 167-173 (2012) [58] Balster, E.J., Zheng, Y.F., Ewing, R.L.: Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans. Image Process. 14(12), 2024-2039 (2005) [59] Chen, Y., Ji, Z., Hua, C.: Spatial adaptive Bayesian wavelet threshold exploiting scale and space consistency. Multidimens. Syst. Signal Process. 19(1), 157-170 (2008) · Zbl 1167.93026 [60] Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736-3745 (2006) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.