×

Book review of: Christian Kassel and Vladimir Turaev, Braid groups; Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen and Bert Wiest, Ordering braids. (English) Zbl 1292.00013


MSC:

00A17 External book reviews
20-02 Research exposition (monographs, survey articles) pertaining to group theory
20F36 Braid groups; Artin groups
20F60 Ordered groups (group-theoretic aspects)
03E10 Ordinal and cardinal numbers
20F34 Fundamental groups and their automorphisms (group-theoretic aspects)
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
20F38 Other groups related to topology or analysis
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M50 General geometric structures on low-dimensional manifolds
51M09 Elementary problems in hyperbolic and elliptic geometries
68Q25 Analysis of algorithms and problem complexity
68Q70 Algebraic theory of languages and automata
68W30 Symbolic computation and algebraic computation
20C08 Hecke algebras and their representations
20C25 Projective representations and multipliers
20F05 Generators, relations, and presentations of groups
20M05 Free semigroups, generators and relations, word problems
20N02 Sets with a single binary operation (groupoids)
06F15 Ordered groups
55R80 Discriminantal varieties and configuration spaces in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. I. Adyan, Fragments of the word \Delta in the braid group, Mat. Zametki 36 (1984), no. 1, 25 – 34 (Russian). · Zbl 0599.20044
[2] J.W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. 9 (1923), 93-95.
[3] E. Artin, Theorie der Zopfe, Abh. Math. Sem. Hamburg, 4 (1925), 47-72. · JFM 51.0450.01
[4] V. Bardakov, R. Mikhailov, V. Vershinin, J. Wu, Brunnian braids on surfaces, preprint arXiv:0909.3387v1 [math.GT] 18 Sept. 2009. · Zbl 1270.20036
[5] A. Berrick, F. Cohen, E. Hanbury, Y. Wong and J. Wu, Braids: Introductory lectures on braids, configurations and their applications, National Univ. of Singapore, Lecture Notes Series 19, World Scientific Publishing 2010. · Zbl 1186.20001
[6] A. J. Berrick, F. R. Cohen, Y. L. Wong, and J. Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006), no. 2, 265 – 326. · Zbl 1188.55007
[7] Joan S. Birman and William W. Menasco, Stabilization in the braid groups. I. MTWS, Geom. Topol. 10 (2006), 413 – 540. · Zbl 1128.57003
[8] Joan S. Birman and R. F. Williams, Knotted periodic orbits in dynamical systems. I. Lorenz’s equations, Topology 22 (1983), no. 1, 47 – 82. · Zbl 0507.58038
[9] W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Hamburg II (1936), 171-178. · Zbl 0011.17801
[10] Gerhard Burde and Heiner Zieschang, Knots, De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. · Zbl 0568.57001
[11] R. Courant, Differential and Integral Calculus, 2, Nordeman Publishing, 1948.
[12] Patrick Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345 (1994), no. 1, 115 – 150. · Zbl 0837.20048
[13] Patrick Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 2, 267 – 306 (French, with English and French summaries). · Zbl 1017.20031
[14] Patrick Dehornoy, Ivan Dynnikov, Dale Rolfsen, and Bert Wiest, Ordering braids, Mathematical Surveys and Monographs, vol. 148, American Mathematical Society, Providence, RI, 2008. · Zbl 1163.20024
[15] I. A. Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006), 29 – 76. · Zbl 1132.57006
[16] David Eisenbud and Walter Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, vol. 110, Princeton University Press, Princeton, NJ, 1985. · Zbl 0628.57002
[17] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. · Zbl 0764.20017
[18] Edward Fadell and Lee Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118. · Zbl 0136.44104
[19] R. Fenn, M. T. Greene, D. Rolfsen, C. Rourke, and B. Wiest, Ordering the braid groups, Pacific J. Math. 191 (1999), no. 1, 49 – 74. · Zbl 1009.20042
[20] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235 – 254. · Zbl 0194.03303
[21] Étienne Ghys, Knots and dynamics, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 247 – 277. · Zbl 1125.37032
[22] E. Ghys and J. Leys, Lorenz and Modular Flows: A Visual Introduction, AMS Feature Column, Nov. 2006, http://www.ams.org/featurecolumn/archive/lorenz.html.
[23] E. A. Gorin and V. Ja. Lin, Algebraic equations with continuous coefficients, and certain questions of the algebraic theory of braids, Mat. Sb. (N.S.) 78 (120) (1969), 579 – 610 (Russian).
[24] A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1 – 60 (German). · JFM 23.0429.01
[25] T. Ito, Braid ordering and the geometry of a closed braid, arXiv:0805.1447 [math:GT]. · Zbl 1214.57010
[26] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335 – 388. · Zbl 0631.57005
[27] Christian Kassel and Vladimir Turaev, Braid groups, Graduate Texts in Mathematics, vol. 247, Springer, New York, 2008. With the graphical assistance of Olivier Dodane. · Zbl 1208.20041
[28] E. N. Lorenz, Deterministic non-periodic flow, J. Atmospheric Science 20 (1963), 130-141. · Zbl 1417.37129
[29] D. Mackenzie, What’s Happening in the Mathematical Sciences 7 (2009), American Mathematical Society, 2-17. · Zbl 1326.00011
[30] A.A. Markov, Uber die freie Äquivalenz der geschlossenen Zopfe, Recueil Mathematique Moscou, Mat Sb 1 43 (1936), 73-78.
[31] William Menasco and Morwen Thistlethwaite , Handbook of knot theory, Elsevier B. V., Amsterdam, 2005. · Zbl 1073.57001
[32] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[33] J. Nielsen, Jakob Nielsen: Collected Mathematical Papers, \( \char93 \)[N-18, 20, 21], Birkhäuser, 1986.
[34] S. Yu. Orevkov, Link theory and oval arrangements of real algebraic curves, Topology 38 (1999), no. 4, 779 – 810. · Zbl 0923.14032
[35] Stepan Yu. Orevkov, Quasipositivity problem for 3-braids, Turkish J. Math. 28 (2004), no. 1, 89 – 93. · Zbl 1055.20029
[36] T. Pinsky, private conversations at Technion, Haifa, Israel, in January 2008 and again in January 2010.
[37] Józef H. Przytycki, Classical roots of knot theory, Chaos Solitons Fractals 9 (1998), no. 4-5, 531 – 545. Knot theory and its applications. · Zbl 0933.57005
[38] Lee Rudolph, Algebraic functions and closed braids, Topology 22 (1983), no. 2, 191 – 202. · Zbl 0505.57003
[39] Hamish Short and Bert Wiest, Orderings of mapping class groups after Thurston, Enseign. Math. (2) 46 (2000), no. 3-4, 279 – 312. · Zbl 1023.57013
[40] Pierre Vogel, Representation of links by braids: a new algorithm, Comment. Math. Helv. 65 (1990), no. 1, 104 – 113. · Zbl 0703.57004
[41] Shuji Yamada, The minimal number of Seifert circles equals the braid index of a link, Invent. Math. 89 (1987), no. 2, 347 – 356. · Zbl 0634.57004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.