Sun, Zhi-Wei A refinement of a congruence result by van Hamme and Mortenson. (English) Zbl 1292.11040 Ill. J. Math. 56, No. 3, 967-979 (2012). Summary: Let \(p\) be an odd prime. In 2008, E. Mortenson [Proc. Am. Math. Soc. 136, No. 12, 4321–4328 (2008; Zbl 1171.11061)] proved van Hamme’s following conjecture: \[ \sum^{(p-1)/2}_{k=0} (4k+1)\binom{-1/2}{k}^3\equiv(-1)^{(p-1)/2}p\pmod {p^3}. \] In this paper, we show further that \[ \begin{aligned} \sum^{(p-1)}_{k=0}(4k+1)\binom{-1/2}{k}^3 & \equiv \sum^{(p-1)/2}_{k=0}(4k+1)\binom{-1/2}{k}^3 \\ & \equiv (-1)^{(p-1)/2}p+p^3E_{p-3}\pmod {p^4},\end{aligned} \] where \(E_{0},E_{1},E_{2},\ldots \) are Euler numbers. We also prove that if \(p>3\) then \[ \sum^{(p-1)/2}_{k=0}\frac{20k+3}{(-2^{10})^{k}}\binom{4k}{k,k,k,k} \equiv (-1)^{(p-1)/2}p(2^{p-1}+2-(2^{p-1}-1)^2) \pmod {p^4}. \] Cited in 2 ReviewsCited in 22 Documents MSC: 11B65 Binomial coefficients; factorials; \(q\)-identities 05A10 Factorials, binomial coefficients, combinatorial functions 11A07 Congruences; primitive roots; residue systems 11B68 Bernoulli and Euler numbers and polynomials Citations:Zbl 1171.11061 × Cite Format Result Cite Review PDF Full Text: arXiv Euclid References: [1] \beginbarticle \bauthor\binitsT. \bsnmAmdeberhan and \bauthor\binitsD. \bsnmZeilberger, \batitleHypergeometric series acceleration via the WZ method, \bjtitleElectron. J. Combin. \bvolume4 (\byear1997) no. \bissue2, page #R3. \endbarticle \endbibitem [2] \beginbarticle \bauthor\binitsN. D. \bsnmBaruah and \bauthor\binitsB. C. \bsnmBerndt, \batitleEisenstein series and Ramanujan-type series for \(1/\pi\), \bjtitleRamanujan J. \bvolume23 (\byear2010), page 17-\blpage44. \endbarticle \endbibitem · Zbl 1204.33005 · doi:10.1007/s11139-008-9155-8 [3] \beginbarticle \bauthor\binitsN. D. \bsnmBaruah, \bauthor\binitsB. C. \bsnmBerndt and \bauthor\binitsH. H. \bsnmChan, \batitleRamanujan’s series for \(1/\pi\): A survey, \bjtitleAmer. Math. Monthly \bvolume116 (\byear2009), page 567-\blpage587. \endbarticle \endbibitem · Zbl 1229.11162 · doi:10.4169/193009709X458555 [4] \beginbbook \bauthor\binitsB. C. \bsnmBerndt, \bbtitleRamanujan’s Notebooks, Part IV, \bpublisherSpringer, \blocationNew York, \byear1994. \endbbook \endbibitem · doi:10.1007/978-1-4612-0879-2 [5] \beginbchapter \bauthor\binitsS. B. \bsnmEkhad and \bauthor\binitsD. \bsnmZeilberger, \bctitleA WZ proof of Ramanujan’s formula for \(\pi\), \bbtitleGeometry, analysis, and mechanics (\beditor\binitsJ. M. \bsnmRassias, ed.), \bpublisherWorld Sci. Publ., \blocationSingapore, \byear1994, pp. page 107-\blpage108. \endbchapter \endbibitem [6] \beginbarticle \bauthor\binitsE. \bsnmLehmer, \batitleOn congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, \bjtitleAnn. of Math. (2) \bvolume39 (\byear1938), page 350-\blpage360. \endbarticle \endbibitem · Zbl 0019.00505 · doi:10.2307/1968791 [7] \beginbarticle \bauthor\binitsL. \bsnmLong, \batitleHypergeometric evaluation identities and supercongruences, \bjtitlePacific J. Math. \bvolume249 (\byear2011), page 405-\blpage418. \endbarticle \endbibitem · Zbl 1215.33002 · doi:10.2140/pjm.2011.249.405 [8] \beginbarticle \bauthor\binitsF. \bsnmMorley, \batitleNote on the congruence \(2^{4n}\equiv(-1)^n(2n)!/(n!)^2\), where \(2n+1\) is a prime, \bjtitleAnn. of Math. \bvolume9 (\byear1895), page 168-\blpage170. \endbarticle \endbibitem · JFM 26.0208.02 · doi:10.2307/1967516 [9] \beginbarticle \bauthor\binitsE. \bsnmMortenson, \batitleA \(p\)-adic supercongruence conjecture of van Hamme, \bjtitleProc. Amer. Math. Soc. \bvolume136 (\byear2008), page 4321-\blpage4328. \endbarticle \endbibitem · Zbl 1171.11061 · doi:10.1090/S0002-9939-08-09389-1 [10] \beginbbook \bauthor\binitsM. , \bauthor\binitsH. S. \bsnmWilf and \bauthor\binitsD. \bsnmZeilberger, \bbtitle\(A=B\), \bpublisherA K Peters, \blocationWellesley, \byear1996. \endbbook \endbibitem [11] \beginbarticle \bauthor\binitsS. \bsnmRamanujan, \batitleModular equations and approximations to \(\pi\), \bjtitleQuart. J. Math. (Oxford) (2) \bvolume45 (\byear1914), page 350-\blpage372. \endbarticle \endbibitem [12] \beginbarticle \bauthor\binitsZ. H. \bsnmSun, \batitleCongruences concerning Legendre polynomials, \bjtitleProc. Amer. Math. Soc. \bvolume139 (\byear2011), page 1915-\blpage1929. \endbarticle \endbibitem · Zbl 1225.11006 · doi:10.1090/S0002-9939-2010-10566-X [13] \beginbarticle \bauthor\binitsZ. W. \bsnmSun, \batitleOn congruences related to central binomial coefficients, \bjtitleJ. Number Theory \bvolume131 (\byear2011), page 2219-\blpage2238. \endbarticle \endbibitem · Zbl 1261.11019 · doi:10.1016/j.jnt.2011.04.004 [14] \beginbarticle \bauthor\binitsZ. W. \bsnmSun, \batitleSupper congruences and Euler numbers, \bjtitleSci. China Math. \bvolume54 (\byear2011), page 2509-\blpage2535. \endbarticle \endbibitem · Zbl 1256.11011 · doi:10.1007/s11425-011-4302-x [15] \beginbchapter \bauthor\binitsL. \bparticlevan \bsnmHamme, \bctitleSome conjectures concerning partial sums of generalized hypergeometric series, \bbtitle\(p\)-adic functional analysis (\bconflocationNijmegen, \bconfdate1996), \bsertitleLecture Notes in Pure and Appl. Math., vol. \bseriesno192, \bpublisherDekker, \blocationNew York, \byear1997, pp. page 223-\blpage236. \endbchapter \endbibitem [16] \beginbarticle \bauthor\binitsJ. \bsnmWolstenholme, \batitleOn certain properties of prime numbers, \bjtitleQuart. J. Appl. Math. \bvolume5 (\byear1862), page 35-\blpage39. \endbarticle \endbibitem [17] \beginbarticle \bauthor\binitsD. \bsnmZeilberger, \batitleClosed form (pun intended!), \bjtitleContemp. Math. \bvolume143 (\byear1993), page 579-\blpage607. \endbarticle \endbibitem · doi:10.1090/conm/143/01023 [18] \beginbarticle \bauthor\binitsL. L. \bsnmZhao, \bauthor\binitsH. \bsnmPan and \bauthor\binitsZ. W. \bsnmSun, \batitleSome congruences for the second-order Catalan numbers, \bjtitleProc. Amer. Math. Soc. \bvolume138 (\byear2010), page 37-\blpage46. \endbarticle \endbibitem · Zbl 1219.11034 · doi:10.1090/S0002-9939-09-10067-9 [19] \beginbarticle \bauthor\binitsW. \bsnmZudilin, \batitleRamanujan-type supercongruences, \bjtitleJ. Number Theory \bvolume129 (\byear2009), page 1848-\blpage1857. \endbarticle \endbibitem · Zbl 1231.11147 · doi:10.1016/j.jnt.2009.01.013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.