zbMATH — the first resource for mathematics

Partial sums of the Möbius function in arithmetic progressions assuming GRH. (English) Zbl 1292.11107
Summary: We consider Mertens’ function in arithmetic progression, \[ M(x,q,a) := \sum{_{\substack{ n\leq x,\\ n\equiv a\bmod q}}} \mu(n). \] Assuming the generalized Riemann hypothesis (GRH), we show that the bound \[ M(x,q,a)\ll_\varepsilon \sqrt{x}\exp\left((\log x)^{3/5}(\log\log x)^{16/5 +\varepsilon}\right) \] holds uniform for all \(q\leq \exp(\tfrac{\log 2}{2}\lfloor (\log x)^{3/5}(\log\log x)^{11/5}\rfloor),\) \(\gcd(a,q)=1\) and all \(\varepsilon>0\). The implicit constant depends only on \(\varepsilon\). For the proof, a former method of K. Soundararajan is extended to \(L\)-series.

11N37 Asymptotic results on arithmetic functions
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
Full Text: DOI Euclid arXiv
[1] D.A. Goldston, S.M. Gonek, A note on \(S(t)\) and the zeros of the Riemann zeta-function , Bull. London Math Soc. vol. 39 (2007), no.3, 482-486. · Zbl 1127.11058 · doi:10.1112/blms/bdm032
[2] H. Iwaniec, E. Kowalski, Analytic number theory , American Math. Soc. Coll. Pub., vol. 53 (2004). · Zbl 1059.11001
[3] E. Landau, Über die Möbiussche Funktion , Rend. Circ. Mat. Palermo 48 (1924), 277-280. · JFM 50.0120.01
[4] H. Maier, H.L. Montgomery, The sum of the Möbius function , Bull. London Math Soc. 41 (2009), no. 2, 213-226. · Zbl 1241.11121 · doi:10.1112/blms/bdn119
[5] A. De Roton, M. Balazard, Notes de lecture de l’article,Partial sums of the Möbius function” de Kannan Soundararajan , arXiv.org, 2008, arXiv: · arxiv.org
[6] A. Selberg, Lectures on sieves , Collected Papers, vol. 2 (1989), Springer, 65-247.
[7] K. Soundararajan, Partial sums of the Möbius function , J. Reine Angew. Math. 631 (2009), 141-152. · Zbl 1184.11040 · doi:10.1515/CRELLE.2009.044
[8] E.C. Titchmarsh, A consequence of the Riemann hypothesis , J. London Math. Soc. 2 (1927), 247-254. · JFM 53.0312.02
[9] J.D. Vaaler, Some extremal functions in Fourier analysis , Bull. of the AMS 12 (1985), no. 2, 183-216. · Zbl 0575.42003 · doi:10.1090/S0273-0979-1985-15349-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.