Cao, Yonghui; Zhou, Jiang Morrey spaces for nonhomogeneous metric measure spaces. (English) Zbl 1292.42013 Abstr. Appl. Anal. 2013, Article ID 196459, 8 p. (2013). Summary: The authors give a definition of Morrey spaces for nonhomogeneous metric measure spaces and investigate the boundedness of some classical operators including maximal operator, fractional integral operator, and Marcinkiewicz integral operators. Cited in 29 Documents MSC: 42B35 Function spaces arising in harmonic analysis 42B25 Maximal functions, Littlewood-Paley theory 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 47G10 Integral operators 45P05 Integral operators Keywords:Morrey spaces; nonhomogeneous metric measure spaces; maximal operators; fractional integral operators; Marcinkiewicz integral operators × Cite Format Result Cite Review PDF Full Text: DOI References: [1] García-Cuerva, J.; Gatto, A. E., Boundedness properties of fractional integral operators associated to non-doubling measures, Studia Mathematica, 162, 3, 245-261 (2004) · Zbl 1045.42006 · doi:10.4064/sm162-3-5 [2] Hu, G.; Meng, Y.; Yang, D., Multilinear commutators for fractional integrals in non-homogeneous spaces, Publicacions Matemàtiques, 48, 2, 335-367 (2004) · Zbl 1076.42009 · doi:10.5565/PUBLMAT_48204_03 [3] Tolsa, X., BMO, \(H^1\), and Calderón-Zygmund operators for non doubling measures, Mathematische Annalen, 319, 1, 89-149 (2001) · Zbl 0974.42014 · doi:10.1007/PL00004432 [4] Tolsa, X., Littlewood-Paley theory and the T(1) theorem with non-doubling measures, Advances in Mathematics, 164, 1, 57-116 (2001) · Zbl 1015.42010 · doi:10.1006/aima.2001.2011 [5] Tolsa, X., The space \(H^1\) for nondoubling measures in terms of a grand maximal operator, Transactions of the American Mathematical Society, 355, 1, 315-348 (2003) · Zbl 1021.42010 · doi:10.1090/S0002-9947-02-03131-8 [6] Tolsa, X., Painlevé’s problem and the semiadditivity of analytic capacity, Acta Mathematica, 190, 1, 105-149 (2003) · Zbl 1060.30031 · doi:10.1007/BF02393237 [7] Tolsa, X., The semiadditivity of continuous analytic capacity and the inner boundary conjecture, American Journal of Mathematics, 126, 3, 523-567 (2004) · Zbl 1060.30032 · doi:10.1353/ajm.2004.0021 [8] Chen, W.; Meng, Y.; Yang, D., Calderón-Zygmund operators on Hardy spaces without the doubling condition, Proceedings of the American Mathematical Society, 133, 9, 2671-2680 (2005) · Zbl 1113.42008 · doi:10.1090/S0002-9939-05-07781-6 [9] Chen, W.; Sawyer, E., A note on commutators of fractional integrals with \((u)\) functions, Illinois Journal of Mathematics, 46, 4, 1287-1298 (2002) · Zbl 1033.42008 [10] Hytönen, T., A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa, Publicacions Matemàtiques, 54, 2, 485-504 (2010) · Zbl 1246.30087 · doi:10.5565/PUBLMAT_54210_10 [11] Bui, T. A.; Duong, X. T., Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces, Journal of Geometric Analysis, 23, 2, 895-932 (2013) · Zbl 1267.42013 · doi:10.1007/s12220-011-9268-y [12] Hytönen, T.; Liu, S.; Yang, D.; Yang, D., Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces, Canadian Journal of Mathematics, 64, 4, 892-923 (2012) · Zbl 1250.42044 · doi:10.4153/CJM-2011-065-2 [13] Zhou, J.; Ma, B. L., Marcinkiewicz commutators with Lipschitz functions in non-homogeneous spaces, Canadian Mathematical Bulletin, 55, 3, 646-662 (2012) · Zbl 1266.42051 · doi:10.4153/CMB-2011-139-1 [14] Hytönen, T.; Yang, D.; Yang, D., The Hardy space \(H^1\) on non-homogeneous metric spaces, Mathematical Proceedings of the Cambridge Philosophical Society, 153, 1, 9-31 (2012) · Zbl 1250.42076 · doi:10.1017/S0305004111000776 [15] Lin, H.; Nakai, E.; Yang, D., Boundedness of Lusin-area and \(g_\lambda^*\) functions on localized BMO spaces over doubling metric measure spaces, Bulletin des Sciences Mathématiques, 135, 1, 59-88 (2011) · Zbl 1220.42014 · doi:10.1016/j.bulsci.2010.03.004 [16] Lin, H.; Yang, D., An interpolation theorem for sublinear operators on non-homogeneous metric measure spaces, Banach Journal of Mathematical Analysis, 6, 2, 168-179 (2012) · Zbl 1252.42025 [17] Liu, S.; Yang, D.; Yang, D., Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations, Journal of Mathematical Analysis and Applications, 386, 1, 258-272 (2012) · Zbl 1230.42020 · doi:10.1016/j.jmaa.2011.07.055 [18] Sawano, Y.; Tanaka, H., Morrey spaces for non-doubling measures, Acta Mathematica Sinica, 21, 6, 1535-1544 (2005) · Zbl 1129.42403 · doi:10.1007/s10114-005-0660-z [19] Sawano, Y., \(l^q\)-valued extension of the fractional maximal operators for non-doubling measures via potential operators, International Journal of Pure and Applied Mathematics, 26, 4, 505-523 (2006) · Zbl 1096.42007 [20] Sawano, Y.; Tanaka, H., Equivalent norms for the Morrey spaces with non-doubling measures, Far East Journal of Mathematical Sciences, 22, 3, 387-404 (2006) · Zbl 1135.42323 [21] Chiarenza, F.; Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rendiconti di Matematica e delle sue Applicazioni, 7, 3-4, 273-279 (1987) · Zbl 0717.42023 [22] Fu, X.; Yang, D.; Yuan, W., Generalized fractional integrals and their commutators over non-homogeneous spaces [23] Lin, H.; Yang, D., Equivalent Boundedness of Marcinkiewicz integrals on nonhomogeneous metric measure spaces · Zbl 1304.42038 [24] Guliyev, V. S.; Sawano, Y., Linear and sublinear operators on Generalized Morrey spaces with non-doubling measures, Publicationes Mathematicae Debrecen, 83, 3, 1-17 (2013) · Zbl 1313.42066 [25] Heinonen, J., Lectures on Analysis on Metric Spaces (2001), New York, NY, USA: Springer, New York, NY, USA · Zbl 0985.46008 [26] Di Fazio, G.; Ragusa, M. A., Commutators and Morrey spaces, Unione Matematica Italiana. Bollettino A, 5, 3, 323-332 (1991) · Zbl 0761.42009 [27] Peetre, J., On the theory of \(L_p^\lambda\) spaces, Journal of Functional Analysis, 4, 71-87 (1969) · Zbl 0175.42602 [28] Kokilashvili, V.; Meskhi, A., Maximal functions and potentials in variable exponent Morrey spaces with non-doubling measure, Complex Variables and Elliptic Equations, 55, 8-10, 923-936 (2010) · Zbl 1205.26014 · doi:10.1080/17476930903276068 [29] Hedberg, L. I., On certain convolution inequalities, Proceedings of the American Mathematical Society, 36, 505-510 (1972) · Zbl 0283.26003 · doi:10.1090/S0002-9939-1972-0312232-4 [30] Edmunds, D. E.; Kokilashvili, V.; Meskhi, A., Bounded and Compact Integral Operators (2002), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 1023.42001 [31] Sihwaninggrum, I.; Sawano, Y., Weak and strong type estimates for fractional integral opertors on Morrey spaces in metric measure spaces, Eurasian Mathematical Journal, 4, 1, 76-81 (2013) · Zbl 1277.42019 [32] Eridani, A.; Kokilashvili, V.; Meskhi, A., Morrey spaces and fractional integral operators, Expositiones Mathematicae, 27, 3, 227-239 (2009) · Zbl 1181.26014 · doi:10.1016/j.exmath.2009.01.001 [33] Adams, D. R., A note on Riesz potentials, Duke Mathematical Journal, 42, 4, 765-778 (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.