Moment bounds and mean squared prediction errors of long-memory time series.(English)Zbl 1292.62099

Summary: A moment bound for the normalized conditional-sum-of-squares (CSS) estimate of a general autoregressive fractionally integrated moving average (ARFIMA) model with an arbitrary unknown memory parameter is derived in this paper. To achieve this goal, a uniform moment bound for the inverse of the normalized objective function is established. An important application of these results is to establish asymptotic expressions for the one-step and multi-step mean squared prediction errors (MSPE) of the CSS predictor. These asymptotic expressions not only explicitly demonstrate how the multi-step MSPE of the CSS predictor manifests with the model complexity and the dependent structure, but also offer means to compare the performance of the CSS predictor with the least squares (LS) predictor for integrated autoregressive models. It turns out that the CSS predictor can gain substantial advantage over the LS predictor when the integration order is high. Numerical findings are also conducted to illustrate the theoretical results.

MSC:

 62J02 General nonlinear regression 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62F12 Asymptotic properties of parametric estimators 60F25 $$L^p$$-limit theorems
Full Text:

References:

 [1] Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 659-672. · Zbl 0827.62088 [2] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201 [3] Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series. Biometrika 60 217-226. · Zbl 0261.62074 [4] Chan, N. H., Huang, S. F. and Ing, C. K. (2013). Supplement to “Moment bounds and mean squared prediction errors of long-memory time series.” . · Zbl 1292.62099 [5] Chan, N. H. and Ing, C.-K. (2011). Uniform moment bounds of Fisher’s information with applications to time series. Ann. Statist. 39 1526-1550. · Zbl 1220.62088 [6] Chan, N. H. and Wei, C. Z. (1988). Limiting distributions of least squares estimates of unstable autoregressive processes. Ann. Statist. 16 367-401. · Zbl 0666.62019 [7] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749-1766. · Zbl 0703.62091 [8] Doukhan, P., Oppenheim, G. and Taqqu, M. S., eds. (2003). Theory and Applications of Long-Range Dependence . BirkhĂ¤user, Boston, MA. · Zbl 1005.00017 [9] Findley, D. F. and Wei, C.-Z. (2002). AIC, overfitting principles, and the boundedness of moments of inverse matrices for vector autoregressions and related models. J. Multivariate Anal. 83 415-450. · Zbl 1180.62120 [10] Fox, R. and Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 517-532. · Zbl 0606.62096 [11] Fuller, W. A. and Hasza, D. P. (1981). Properties of predictors for autoregressive time series. J. Amer. Statist. Assoc. 76 155-161. · Zbl 0465.62093 [12] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory Related Fields 86 87-104. · Zbl 0717.62015 [13] Hualde, J. and Robinson, P. M. (2011). Gaussian pseudo-maximum likelihood estimation of fractional time series models. Ann. Statist. 39 3152-3181. · Zbl 1246.62186 [14] Ing, C.-K. (2003). Multistep prediction in autoregressive processes. Econometric Theory 19 254-279. [15] Ing, C.-K., Lin, J.-L. and Yu, S.-H. (2009). Toward optimal multistep forecasts in non-stationary autoregressions. Bernoulli 15 402-437. · Zbl 1200.62114 [16] Ing, C.-K. and Sin, C.-Y. (2006). On prediction errors in regression models with nonstationary regressors. In Time Series and Related Topics (H.-C. Ho, C.-K. Ing and T. L. Lai, eds.). Institute of Mathematical Statistics Lecture Notes-Monograph Series 52 60-71. IMS, Beachwood, OH. · Zbl 1268.62126 [17] Ing, C.-K., Sin, C.-Y. and Yu, S.-H. (2010). Prediction errors in nonstationary autoregressions of infinite order. Econometric Theory 26 774-803. · Zbl 1191.62159 [18] Ing, C.-K. and Wei, C.-Z. (2003). On same-realization prediction in an infinite-order autoregressive process. J. Multivariate Anal. 85 130-155. · Zbl 1038.62086 [19] Katayama, N. (2008). Asymptotic prediction of mean squared error for long-memory processes with estimated parameters. J. Forecast. 27 690-720. [20] Kunitomo, N. and Yamamoto, T. (1985). Properties of predictors in misspecified autoregressive time series models. J. Amer. Statist. Assoc. 80 941-950. · Zbl 0588.62171 [21] Lai, T. L. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic regression models. Ann. Statist. 22 1917-1930. · Zbl 0824.62054 [22] Ling, S. (2007). Testing for change points in time series models and limiting theorems for NED sequences. Ann. Statist. 35 1213-1237. · Zbl 1194.62017 [23] Robinson, P. M. (2006). Conditional-sum-of-squares estimation of models for stationary time series with long memory. In Time Series and Related Topics (H.-C. Ho, C.-K. Ing and T. L. Lai, eds.). Institute of Mathematical Statistics Lecture Notes-Monograph Series 52 130-137. IMS, Beachwood, OH. · Zbl 1268.62117 [24] Robinson, P. M. and Hidalgo, F. J. (1997). Time series regression with long-range dependence. Ann. Statist. 25 77-104. · Zbl 0870.62072 [25] Schorfheide, F. (2005). VAR forecasting under misspecification. J. Econometrics 128 99-136. · Zbl 1337.62296 [26] Wei, C. Z. (1987). Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Ann. Statist. 15 1667-1682. · Zbl 0643.62058 [27] Yamamoto, T. (1981). Predictions of multivariate autoregressive-moving average models. Biometrika 68 485-492. · Zbl 0466.62089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.