Samet, Bessem Existence results for a coupled system of nonlinear fourth-order differential equations. (English) Zbl 1293.34028 Abstr. Appl. Anal. 2013, Article ID 324848, 9 p. (2013). Summary: The purpose of this paper is to study the existence of solutions to the following coupled system of nonlinear fourth-order differential equations: \[ \begin{gathered} x''''(t)=f(t,x(t), \quad t\in (0,1),\\ x''''(t)=g(t,x(t), \quad t\in (0,1),\\ x(0)=x''(0)=0, \quad x'(1)=0,\\ x'''(1)=\xi(x(1)),\\ y(0)=y''(0)=0,\quad y'(1)=0,\\ y'''(1)=\zeta(y(1)), \end{gathered} \] where \(f,g:[0,1] \times\mathbb{R} \times \mathbb{R}\to\mathbb{R}\) and \(\xi,\zeta: \mathbb{R}\to\mathbb{R}\) are given continuous functions. Cited in 2 Documents MSC: 34B15 Nonlinear boundary value problems for ordinary differential equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Gupta, C. P., A nonlinear boundary-value problem associated with the static equilibrium of an elastic beam supported by sliding clamps, International Journal of Mathematics and Mathematical Sciences, 12, 4, 697-711 (1989) · Zbl 0685.34016 · doi:10.1155/S0161171289000864 [2] Bonanno, G.; Di Bella, B., A boundary value problem for fourth-order elastic beam equations, Journal of Mathematical Analysis and Applications, 343, 2, 1166-1176 (2008) · Zbl 1145.34005 · doi:10.1016/j.jmaa.2008.01.049 [3] Chyan, C. J.; Henderson, J., Positive solutions of 2mth-order boundary value problems, Applied Mathematics Letters, 15, 6, 767-774 (2002) · Zbl 1019.34019 · doi:10.1016/S0893-9659(02)00040-X [4] Graef, J. R.; Yang, B., On a nonlinear boundary value problem for fourth order equations, Journal of Applied Analysis, 72, 439-448 (1999) · Zbl 1031.34017 · doi:10.1080/00036819908840751 [5] Gupta, C. P., Existence and uniqueness theorems for the bending of an elastics beam equation, Journal of Applied Analysis, 26, 4, 289-304 (1988) · Zbl 0611.34015 · doi:10.1080/00036818808839715 [6] Kang, P.; Liu, L., Positive solutions of fourth order singular boundary value problems, Journal of Systems Science and Mathematical Sciences, 28, 604-615 (2008) · Zbl 1174.34011 [7] Li, Y., On the existence of positive solutions for the bending elastic beam equations, Applied Mathematics and Computation, 189, 1, 821-827 (2007) · Zbl 1118.74032 · doi:10.1016/j.amc.2006.11.144 [8] Yao, Q., Existence of n solutions and/or positive solutions to a semipositone elastic beam equation, Nonlinear Analysis: Theory, Methods and Applications, 66, 1, 138-150 (2007) · Zbl 1113.34013 · doi:10.1016/j.na.2005.11.016 [9] Agarwal, R. P., On fourth order boundary value problems arising in beam analysis, Differential Integral Equations, 2, 91-110 (1989) · Zbl 0715.34032 [10] Bai, Z., The method of lower and upper solutions for a bending of an elastic beam equation, Journal of Mathematical Analysis and Applications, 248, 1, 195-202 (2000) · Zbl 1016.34010 · doi:10.1006/jmaa.2000.6887 [11] del Pino, M. A.; Manasevich, R. F., Existence for a fourth-order boundary value problem under a two parameter nonresonance condition, Proceedings of the American Mathematical Society, 112, 81-86 (1991) · Zbl 0725.34020 [12] Dunninger, D. R., Multiplicity of positive solutions for a nonlinear fourth order equation, Annales Polonici Mathematici, 77, 2, 161-168 (2001) · Zbl 0989.34014 · doi:10.4064/ap77-2-3 [13] O’Regan, D., Solvability of some fourth (and higher) order singular boundary value problems, Journal of Mathematical Analysis and Applications, 161, 1, 78-116 (1991) · Zbl 0795.34018 · doi:10.1016/0022-247X(91)90363-5 [14] Kang, P.; Wei, Z., Existence of positive solutions for systems of bending elastic beam equations, Electronic Journal of Differential Equations, 2012, 1-9 (2012) · Zbl 1243.34035 [15] Perov, A. I., On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn, 2, 115-134 (1964) · Zbl 0196.34703 [16] Gilbarg, D. A.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 224 (2001), Berlin, Germany: Springer, Berlin, Germany · Zbl 1042.35002 [17] Sun, J. X., Nonlinear Functional Analysis and Its Application (2008), Beijing, China: Science Press, Beijing, China [18] Agarwal, R. P.; Zhou, Y.; He, Y., Existence of fractional neutral functional differential equations, Computers and Mathematics with Applications, 59, 3, 1095-1100 (2010) · Zbl 1189.34152 · doi:10.1016/j.camwa.2009.05.010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.