Yanovski, Alexandar Recursion operators and expansions over adjoint solutions for the Caudrey-Beals-Coifman system with \(\mathbb Z_P\) reductions of Mikhailov type. (English) Zbl 1293.35271 J. Geom. Symmetry Phys. 30, 105-120 (2013). Summary: We consider the Caudrey-Beals-Coifman linear problem and the theory of the recursion operators (generating operators) related to it in the presence of \(\mathbb Z_p\) reduction of Mikhailov type. Cited in 5 Documents MSC: 35Q51 Soliton equations 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 35Q55 NLS equations (nonlinear Schrödinger equations) Keywords:Caudrey-Beals-Coifman (CBC) system; generalized Zakharov-Shabat (GZS) system; AKNS approach; soliton equations PDF BibTeX XML Cite \textit{A. Yanovski}, J. Geom. Symmetry Phys. 30, 105--120 (2013; Zbl 1293.35271) OpenURL