×

Normal hyperbolicity and continuity of global attractors for a nonlocal evolution equation. (English) Zbl 1293.35353

Summary: We show the normal hyperbolicity property for the equilibria of the evolution equation \(\partial m(r,t)\partial t= -m(r,t)+ g(\beta J\ast m(r,t)+\beta h)\), \(h,\beta \geq 0\), and using the normal hyperbolicity property we prove the continuity (upper semicontinuity and lower semicontinuity) of the global attractors of the flow generated by this equation, with respect to the functional parameter \(J\).

MSC:

35R09 Integro-partial differential equations
35B41 Attractors
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. R. M. Barros, A. L. Pereira, C. Possani, and A. Simonis, “Spatially periodic equilibria for a non local evolution equation,” Discrete and Continuous Dynamical Systems. Series A, vol. 9, no. 4, pp. 937-948, 2003. · Zbl 1035.45002
[2] A. Masi, E. Orlandi, E. Presutti, and L. Triolo, “Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics,” Nonlinearity, vol. 7, no. 3, pp. 633-696, 1994. · Zbl 0797.60088
[3] A. Masi, T. Gobron, and E. Presutti, “Travelling fronts in non-local evolution equations,” Archive for Rational Mechanics and Analysis, vol. 132, no. 2, pp. 143-205, 1995. · Zbl 0847.45008
[4] A. Masi, E. Orlandi, E. Presutti, and L. Triolo, “Uniqueness and global stability of the instanton in nonlocal evolution equations,” Rendiconti di Matematica e delle sue Applicazioni. Serie VII, vol. 14, no. 4, pp. 693-723, 1994. · Zbl 0821.45003
[5] A. Masi, E. Olivieri, and E. Presutti, “Critical droplet for a non-local mean field equation,” Markov Processes and Related Fields, vol. 6, no. 4, pp. 439-471, 2000. · Zbl 0978.35078
[6] A. Masi, E. Orlandi, E. Presutti, and L. Triolo, “Stability of the interface in a model of phase separation,” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 124, no. 5, pp. 1013-1022, 1994. · Zbl 0819.45005
[7] A. L. Pereira and S. H. da Silva, “Existence of global attractors and gradient property for a class of non local evolution equations,” São Paulo Journal of Mathematical Sciences, vol. 2, no. 1, pp. 1-20, 2008. · Zbl 1179.34065
[8] A. L. Pereira and S. H. da Silva, “Continuity of global attractors for a class of non local evolution equations,” Discrete and Continuous Dynamical Systems. Series A, vol. 26, no. 3, pp. 1073-1100, 2010. · Zbl 1191.35069
[9] A. L. Pereira, “Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain,” Journal of Differential Equations, vol. 226, no. 1, pp. 352-372, 2006. · Zbl 1103.34053
[10] H. Brezis, Análisis Funcional Teoría y Aplicaciones, Alianza, Madrid, Spain, 1984.
[11] J. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, vol. 43, American Mathematical Society, Providence, RI, USA, 1974.
[12] J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 1988. · Zbl 0642.58013
[13] J. M. Arrieta and A. N. Carvalho, “Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain,” Journal of Differential Equations, vol. 199, no. 1, pp. 143-178, 2004. · Zbl 1058.35028
[14] A. N. Carvalho and S. Piskarev, “A general approximation scheme for attractors of abstract parabolic problems,” Numerical Functional Analysis and Optimization, vol. 27, no. 7-8, pp. 785-829, 2006. · Zbl 1110.35012
[15] J. K. Hale and G. Raugel, “Lower semicontinuity of attractors of gradient systems and applications,” Annali di Matematica Pura ed Applicata, vol. 154, no. 1, pp. 281-326, 1989. · Zbl 0712.47053
[16] L. A. F. Oliveira, A. L. Pereira, and M. C. Pereira, “Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain,” Electronic Journal of Differential Equations, no. 100, pp. 1-18, 2005. · Zbl 1176.35040
[17] A. L. Pereira and M. C. Pereira, “Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain,” Journal of Differential Equations, vol. 239, no. 2, pp. 343-370, 2007. · Zbl 1214.35008
[18] P. W. Bates, K. Lu, and C. Zeng, Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space, vol. 645 of Memoirs of the American Mathematical Society, American Mathematical Society, Providence, RI, USA, 1998. · Zbl 1023.37013
[19] S. H. da Silva and A. L. Pereira, “Exponential trichotomies and continuity of invariant manifolds,” São Paulo Journal of Mathematical Sciences, vol. 5, no. 2, pp. 111-124, 2011. · Zbl 1272.34057
[20] J. K. Hale and G. Raugel, “Convergence in gradient-like systems with applications to PDE,” Zeitschrift für Angewandte Mathematik und Physik, vol. 43, no. 1, pp. 63-124, 1992. · Zbl 0751.58033
[21] S. H. da Silva, “Lower semicontinuity of global attractors for a class of evolution equations type neural fields in a bounded domain,” http://xxx.tau.ac.il/abs/1312.6745. · Zbl 1401.45010
[22] D. Henry, Evolution Equations in Banach Spaces, Notes in Mathematics-IME, Universidade de São Paulo, São Paulo, Brazil, 1981.
[23] E. N. Dancer, “The G-invariant implicit function theorem in infinite dimensions,” Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 92, no. 1-2, pp. 13-30, 1982. · Zbl 0512.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.