×

Pointwise multipliers for Campanato spaces on Gauss measure spaces. (English) Zbl 1293.42011

Authors’ abstract: The authors characterize pointwise multipliers for Campanato spaces on the Gauss measure space \((\mathbb{R}^n, |\cdot|, \gamma)\), which includes BMO(\(\gamma\)) as a special case. As applications, several examples of the pointwise multipliers are given. Also, the authors give an example of a nonnegative function in BMO(\(\gamma\)) but not in BLO(\(\gamma\)).

MSC:

42B15 Multipliers for harmonic analysis in several variables
42B30 \(H^p\)-spaces
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] A. Carbonaro, G. Mauceri, and S. Meda, \(H^{1}\) and \(\mathrm{BMO}\) for certain locally doubling metric measure spaces , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 543-582. · Zbl 1180.42008
[2] A. Carbonaro, G. Mauceri, and S. Meda, \(H^{1}\) and \(\mathrm{BMO}\) for certain locally doubling metric measure spaces of finite measure , Colloq. Math. 118 (2010), 13-41. · Zbl 1193.42076
[3] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes , Lecture Notes in Math. 242 , Springer, Berlin, 1971. · Zbl 0224.43006
[4] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis , Bull. Amer. Math. Soc. (N.S.) 83 (1977), 569-645. · Zbl 0358.30023
[5] L. Diening, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces , Bull. Sci. Math. 129 (2005), 657-700. · Zbl 1096.46013
[6] E. B. Fabes, C. E. Gutiérrez, and R. Scotto, Weak-type estimates for the Riesz transforms associated with the Gaussian measure , Rev. Mat. Iberoam. 10 (1994), 229-281. · Zbl 0810.42006
[7] L. Forzani and R. Scotto, The higher order Riesz transform for Gaussian measure need not be weak type \((1,1)\) , Studia Math. 131 (1998), 205-214. · Zbl 0954.42009
[8] J. García-Cuerva, G. Mauceri, P. Sjögren, and J. L. Torrea, Higher-order Riesz operators for the Ornstein-Uhlenbeck semigroup , Potential Anal. 10 (1999), 379-407. · Zbl 0954.42010
[9] J. García-Cuerva, G. Mauceri, P. Sjögren and J. L. Torrea, Spectral multipliers for the Ornstein-Uhlenbeck semigroup , J. Anal. Math. 78 (1999), 281-305. · Zbl 0939.42007
[10] C. E. Gutiérrez, On the Riesz transforms for Gaussian measures , J. Funct. Anal. 120 (1994), 107-134. · Zbl 0807.46030
[11] C. E. Gutiérrez, C. Segovia, and J. L. Torrea, On higher order Riesz transforms for Gaussian measures , J. Fourier Anal. Appl. 2 (1996), 583-596. · Zbl 0893.42007
[12] E. Harboure, J. L. Torrea, and B. Viviani, Vector-valued extensions of operators related to the Ornstein-Uhlenbeck semigroup , J. Anal. Math. 91 (2003), 1-29. · Zbl 1069.47049
[13] A. Hartmann, Pointwise multipliers in Hardy-Orlicz spaces, and interpolation , Math. Scand. 106 (2010), 107-140. · Zbl 1211.46023
[14] S. Janson, On functions with conditions on the mean oscillation , Ark. Mat. 14 (1976), 189-196. · Zbl 0341.43005
[15] L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators , Integral Equations Operator Theory 78 (2014), 115-150. · Zbl 1284.42073
[16] A. K. Lerner, Some remarks on the Hardy-Littlewood maximal function on variable \(L^{p}\) spaces , Math. Z. 251 (2005), 509-521. · Zbl 1092.42009
[17] H. Lin, E. Nakai, and D. Yang, Boundedness of Lusin-area and \(g_{\lambda}^{\ast}\) functions on localized BMO spaces over doubling metric measure spaces , Bull. Sci. Math. 135 (2011), 59-88. · Zbl 1220.42014
[18] L. Liu, Y. Sawano, and D. Yang, Morrey-type spaces on the Gauss measure spaces and boundedness of singular integrals , J. Geom. Anal., published electronically 2 October 2012. DOI 10.1007/s12220-012-9362-9. · Zbl 1306.42042
[19] L. Liu and D. Yang, BLO spaces associated with the Ornstein-Uhlenbeck operator , Bull. Sci. Math. 132 (2008), 633-649. · Zbl 1158.42013
[20] J. Maas, J. van Neerven, and P. Portal, Conical square functions and non-tangential maximal functions with respect to the Gaussian measure , Publ. Mat. 55 (2011), 313-341. · Zbl 1226.42013
[21] J. Maas, J. Neerven and P. Portal, Whitney coverings and the tent spaces \(T^{1,q}(\gamma)\) for the Gaussian measure , Ark. Mat. 50 (2012), 379-395. · Zbl 1261.42038
[22] L. Maligranda and E. Nakai, Pointwise multipliers of Orlicz spaces , Arch. Math. (Basel) 95 (2010), 251-256. · Zbl 1211.46025
[23] G. Mauceri and S. Meda, \(\mathrm{BMO}\) and \(H^{1}\) for the Ornstein-Uhlenbeck operator , J. Funct. Anal. 252 (2007), 278-313. · Zbl 1136.46027
[24] G. Mauceri, S. Meda, and P. Sjögren, Endpoint estimates for first-order Riesz transforms associated to the Ornstein-Uhlenbeck operator , Rev. Mat. Iberoam. 28 (2012), 77-91. · Zbl 1238.42005
[25] G. Mauceri, S. Meda and P. Sjögren, A maximal function characterization of the Hardy space for the Gauss measure , Proc. Amer. Math. Soc. 141 (2013), 1679-1692. · Zbl 1266.42054
[26] T. Menárguez, S. Pérez, and F. Soria, The Mehler maximal function: A geometric proof of the weak type \(1\) , J. Lond. Math. Soc. (2) 61 (2000), 846-856. · Zbl 0957.42011
[27] E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation , Studia Math. 105 (1993), 105-119. · Zbl 0812.42008
[28] E. Nakai, Pointwise multipliers on weighted BMO spaces , Studia Math. 125 (1997), 35-56. · Zbl 0874.42009
[29] E. Nakai, A characterization of pointwise multipliers on the Morrey spaces , Sci. Math. Jpn. 3 (2000), 445-454. · Zbl 0980.42005
[30] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation , J. Math. Soc. Japan 37 (1985), 207-218. · Zbl 0546.42019
[31] E. Nakai and K. Yabuta, Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type , Sci. Math. Japon. 46 (1997), 15-28. · Zbl 0884.42010
[32] S. Pérez, The local part and the strong type for operators related to the Gaussian measure , J. Geom. Anal. 11 (2001), 491-507. · Zbl 1058.42015
[33] G. Pisier, “Riesz transforms: A simpler analytic proof of P.-A. Meyer’s inequality” in Séminaire de probabilités, XXII , Lecture Notes in Math. 1321 , Springer, Berlin, 1988, 485-501. · Zbl 0645.60061
[34] P. Sjögren, “On the maximal function for the Mehler kernel” in Harmonic Analysis (Cortona, 1982) , Lecture Notes in Math. 992 , Springer, Berlin, 1983, 73-82. · Zbl 0515.42022
[35] P. Sjögren, Operators associated with the Hermite semigroup-a survey , J. Fourier Anal. Appl. 3 (1997), 813-823. · Zbl 0916.42014
[36] S. Spanne, Some function spaces defined using the mean oscillation over cubes , Ann. Sc. Norm. Super. Pisa (3) 19 (1965), 593-608. · Zbl 0199.44303
[37] D. A. Stegenga, Bounded Toeplitz operators on \(H^{1}\) and applications of the duality between \(H^{1}\) and the functions of bounded mean oscillation , Amer. J. Math. 98 (1976), 573-589. · Zbl 0335.47018
[38] W. Urbina, On singular integrals with respect to the Gaussian measure , Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 17 (1990), 531-567. · Zbl 0737.42018
[39] K. Yabuta, Pointwise multipliers of weighted BMO spaces , Proc. Amer. Math. Soc. 117 (1993), 737-744. · Zbl 0779.42006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.