Dévoué, Victor Generalized solution to a non Lipschitz integral equation. (English) Zbl 1293.45002 J. Integral Equations Appl. 25, No. 4, 455-480 (2013). In this interesting paper the author studies a non-Lipschitz integral equation in the framework of generalized functions. The paper contains definitions, prepositions, theorems, examples and an extensive list of 20 references. It also contains an appendix using the method of successive approximations to establish the existence and uniqueness of a solution of the integral equation. Reviewer: K. C. Gupta (Jaipur) MSC: 45G10 Other nonlinear integral equations 46F30 Generalized functions for nonlinear analysis (Rosinger, Colombeau, nonstandard, etc.) 46T30 Distributions and generalized functions on nonlinear spaces 45L05 Theoretical approximation of solutions to integral equations Keywords:non-Lipschitz integral equations; algebra of generalized functions; nonlinear problems; method of successive approximations PDF BibTeX XML Cite \textit{V. Dévoué}, J. Integral Equations Appl. 25, No. 4, 455--480 (2013; Zbl 1293.45002) Full Text: DOI OpenURL References: [1] S. Bernard, J.-F. Colombeau and A.Delcroix, Generalized integral operators and applications , Math. Proc. Cambr. Philos. Soc. 141 (2006), 521-546. · Zbl 1116.46030 [2] J.-F. Colombeau, Elementary introduction to new generalized functions , North Holland Math. Stud. 113 , North-Holland, Amsterdam, 1984. [3] —, New generalized functions and multiplication of distributions , North-Holland, Amsterdam, 1984. · Zbl 0532.46019 [4] A. Delcroix, Remarks on the embedding of spaces of distributions into spaces of Colombeau generalized functions , Novisad J. Math. 35 (2005), 27-40. · Zbl 1274.46082 [5] A. Delcroix, V. Dévoué and J.-A. Marti, Generalized solutions of singular differential problems. Relationship with classical solutions , J. Math. Anal. Appl. 353 (2009), 386-402. · Zbl 1169.35319 [6] —, Well posed differential problems in algebras of generalized functions , Appl. Anal. 90 (2011), 1747-1761. · Zbl 1235.35009 [7] V. Dévoué, Generalized solutions to a non Lipschitz Cauchy problem , J. Appl. Anal. 15 (2009), 1-32. · Zbl 1180.35165 [8] —, Generalized solutions to a non Lipschitz Goursat problem , Diff. Eq. Appl. 1 (2009), 153-178. · Zbl 1194.35098 [9] —, Generalized solutions to a singular nonlinear Cauchy problem , Novi Sad J. Math. 41 (2011), 85-121. · Zbl 1289.35052 [10] C. Garetto, Topological structures in Colombeau algebras II: Investigation into the duals of \({\mathcal G}_{c}( \Omega)\), \({\mathcal G}(\Omega)\) and \({\mathcal G}_{s}(\r^{n})\) , Monatsh. Math. 146 (2005), 203-226. · Zbl 1094.46026 [11] M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometric theory of generalized functions with applications to general relativity , Kluwer Academic Press, Dordrecht, 2001. · Zbl 0998.46015 [12] B. Jolevska-Tuneska, A. Takači and E. Özça\(\dot{\mathrm g}\), On differential equations with nonstandard coeffients , Appl. Anal. Dis. Math. 1 (2007), 276-283. · Zbl 1274.46078 [13] J.-A. Marti, Fundamental structures and asymptotic microlocalization in sheaves of generalized functions , Int. Transforms Spec. Funct. 6 (1998), 223-228. · Zbl 0902.18005 [14] —, \((\C,\E,¶ )\)-Sheaf structures and applications , in Nonlinear theory of generalized functions , M. Grosser et al., eds., Chapman & Hall/CRC, Boca Raton, 1999. [15] —, Multiparametric algebras and characteristic cauchy problem , in Non-linear algebraic analysis and applications , Proc. Inter. Conf. Generalized Functions (ICGF 2000). CSP (2004), 181-192. [16] —, Non linear algebraic analysis of delta shock wave solutions to burger’s equation , Pacific J. Math. 210 (2003), 165-187. · Zbl 1059.35122 [17] M. Oberguggenberger, Multiplication of distributions and applications to partial differential equations , Pitman Res. Notes Math. 259 , Longman, Harlow, 1992. · Zbl 0818.46036 [18] S. Pilipović and M. Stojanović, Generalized solutions to nonlinear Volterra integral equations with non-Lipschitz nonlinearity , Nonlinear Anal. 37 (1997), 319-335. · Zbl 0931.45005 [19] D. Scarpalézos, Colombeau’s generalized functions : Topological structures ; Microlocal properties. A simplified point of view , Part I, Bull. Cl. Sci. Math. Nat. Sci. Math. 25 (2000), 89-114. · Zbl 1011.46042 [20] —, Colombeau’s generalized functions : Topological structures ; Microlocal properties. A simplified point of view , Part II, Publ. Inst. Math. (Beograd) 76 (2004), 111-125. \noindentstyle · Zbl 1221.46046 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.