zbMATH — the first resource for mathematics

Diffusion tensor smoothing through weighted Karcher means. (English) Zbl 1293.62089
Summary: Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water diffusion at each voxel on a regular grid of locations in a biological specimen by diffusion tensors – \(3\times 3\) positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal effects of MRI scanning) as well as the geometric structure of the underlying diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios.

62G08 Nonparametric regression and quantile regression
62P10 Applications of statistics to biology and medical sciences; meta analysis
92C55 Biomedical imaging and signal processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
medInria; dti
Full Text: DOI Euclid
[1] Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization Algorithms on Matrix Manifolds . Princeton University Press. · Zbl 1147.65043
[2] Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. (2005). Fast and simple computations on tensors with log-euclidean metrics. Technical report, Institut National de Recherche en Informatique et en Automatique.
[3] Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. (2006). Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magnetic Resonance in Medicine , 56:411-421.
[4] Bammer, R., Holdsworth, S. J., Veldhuis, W. B., and Skare, S. (2009). New methods in diffusion-weighted and diffusion tensor imaging. Magnetic Resonance Imaging Clinics of North America , 17:175-204.
[5] Basser, P. and Pajevic, S. (2000). Statistical artifacts in diffusion tensor mri (dt-mri) caused by background noise. Magnetic Resonance in Medicine , 44:41-50.
[6] Basser, P. J. and Pierpaoli, C. (2005). A simplified method to measure the diffusion tensor from seven mr images. Magnetic Resonance in Medicine , 39(6):928-934.
[7] Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in Biomedicine , 15:435-455.
[8] Carmichael, O., Chen, J., Paul, D., and Peng, J. Supplement to “Diffusion tensor smoothing through weighted Karcher means”. DOI: 10.1214/00-EJS825SUPP.
[9] Castaño Moraga, C. A., Lenglet, C., Deriche, R., and Ruiz-Alzola, J. (2007). A Riemannian approach to anisotropic filtering of tensor fields. Signal Processing , 87:263-276. · Zbl 1186.94077
[10] Chanraud, S., Zahr, N., Sullivan, E. V., and Pfefferbaum, A. (2010). MR diffusion tensor imaging: a window into white matter integrity of the working brain. Neuropsychology Review , 20:209-225.
[11] Chung, M. K., Lazar, M., Alexender, A. L., Lu, Y., and Davidson, R. (2003). Probabilistic connectivity measure in diffusion tensor imaging via anisotropic kernel smoothing. Technical report, University of Wisconsin, Madison. Technical Report.
[12] Chung, M. K., Lee, J. E., and Alexander, A. L. (2005). Anisotropic kernel smoothing in diffusion tensor imaging: theoretical framework. Technical report, University of Wisconsin, Madison. Technical Report.
[13] De Crespigny, A. and Moseley, M. (1998). Eddy current induced image warping in diffusion weighted epi. In Proceedings of the 6th Meeting of the International Society for Magnetic Resonance in Medicine. Berkeley, Calif, ISMRM .
[14] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications . Chapman & Hall/CRC. · Zbl 0873.62037
[15] Farrell, J. A. D., Landman, B. A., Jones, C. K., Smith, S. A., Prince, J. L., van Zijl, P. C. M., and Mori, S. (2007). Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Journal of Magnetic Resonance Imaging , 256:756-767.
[16] Ferreira, R., Xavier, J., Costeira, J. P., and Barroso, V. (2006). Newton method for riemannian centroid computation in naturally reductive homogeneous spaces. In Proceedings of ICASSP 2006 - IEEE International Conference on Acoustics, Speech and Signal Processing , volume 3, pages 77-85.
[17] Fletcher, P. T. and Joshi, S. (2004). Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis , pages 87-98. Springer.
[18] Fletcher, P. T. and Joshi, S. (2007). Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing , 87:250-262. · Zbl 1186.94126
[19] Förstner, W. and Moonen, B. (1999). Qua vadis geodesia...? In Krumm, F. and Schwarze, V. S., editors, Festschrift for Erik W. Grafarend , pages 113-128.
[20] Gudbjartsson, H. and Patz, S. (1995). The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine , 34:910-914.
[21] Hahn, K. R., Prigarin, S., Heim, S., and Hasan, K. (2006). Random noise in diffusion tensor imaging, its destructive impact and some corrections. In Weickert, J. and Hagen, H., editors, Visualization and Processing of Tensor Fields , pages 107-117. Springer.
[22] Hahn, K. R., Prigarin, S., Rodenacker, K., and Hasan, K. (2009). Denoising for diffusion tensor imaging with low signal to noise ratios: method and monte carlo validation. International Journal for Biomathematics and Biostatistics , 1:83-81.
[23] Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications in Pure and Applied Mathematics , 30:509-541. · Zbl 0354.57005
[24] Kato, T. (1980). Perturbation Theory of Linear Operators . Springer-Verlag. · Zbl 0435.47001
[25] Kochunov, P., Lancaster, J. L., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., and Fox, P. (2001). Regional spatial normalization: toward an optimal target. Journal of Computer Assisted Tomography , 25:805-816.
[26] Mori, S. (2007). Introduction to Diffusion Tensor Imaging . Elsevier.
[27] Mukherjee, P., Berman, J. I., Chung, S. W., Hess, C., and Henry, R. (2008a). Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. American Journal of Neuroradiology , 29:632-641.
[28] Mukherjee, P., Chung, S. W., Berman, J. I., Hess, C. P., and Henry, R. G. (2008b). Diffusion tensor MR imaging and fiber tractography: technical considerations. American Journal of Neuroradiology , 29:843-852.
[29] Parker, G. J. M., Schnabel, J. A., Symms, M. R., Werring, D. J., and Barker, G. J. (2000). Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. Journal of Magnetic Resonance Imaging , 11:702-710.
[30] Pennec, X., Fillard, P., and Ayache, N. (2006). A riemannian framework for tensor computing. Journal of Computer Vision , 66:41-66. · Zbl 1287.53031
[31] Polzehl, J. and Tabelow, K. (2008). Structural adaptive smoothing in diffusion tensor imaging: the R package dti. Technical report, Weierstrass Institute, Berlin. Technical Report.
[32] Rajapakse, J. C., Giedd, J. N., DeCarli, C., Snell, J. W., McLaughlinand, A., Vauss, Y. C., Krain, A. L., Hamburger, S., and Rapoport, J. L. (1996). A technique for single-channel MR brain tissue segmentation: application to a pediatric sample. Magnetic Resonance in Medicine , 14:1053-1065.
[33] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., and Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging , 18:712-721.
[34] Schwartzman, A. (2006). Random Ellipsoids and False Discovery Rates: Statistics for Diffusion Tensor Imaging Data . PhD thesis, Stanford University.
[35] Tabelow, K., Polzehl, J., Spokoiny, V., and Voss, H. U. (2008). Diffusion tensor imaging: structural adaptive smoothing. Neuroimage , 39:1763-1773.
[36] Toussaint, N., Souplet, J. C., and Fillard, P. (2007). MedINRIA: medical image navigation and research tool by INRIA. In Proceedings of the MICCAI’07 Workshop on Interaction in medical image analysis and visualization, Brisbane, Australia .
[37] Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., and Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine , 48:577-582.
[38] Varadarajan, V. S. (1984). Lie groups, Lie algebras, and their representations . Springer. · Zbl 0955.22500
[39] Viswanath, V., Fletcher, E., Singh, B., Smith, N., Paul, D., Peng, J., Chen, J., and Carmichael, O. T. (2012). Impact of DTI smoothing on the study of brain aging. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2012) .
[40] Weinstein, D. M., Kindlmann, G. L., and Lundberg, E. C. (1999). Tensorlines: advection-diffusion based propagation through diffusion tensor fields. In Proceedings of the IEEE Visualization , pages 249-253.
[41] Yuan, Y., Zhu, H., Lin, W., and Marron, J. (2012). Local polynomial regression for symmetric positive definite matrices. Journal of the Royal Statistical Society: Series B (Statistical Methodology) .
[42] Zhu, H. T., Li, Y., Ibrahim, I. G., Shi, X., An, H., Chen, Y., Gao, W., Lin, W., Rowe, D. B., and Peterson, B. S. (2009). Regression models for identifying noise sources in magnetic resonance images. Journal of the American Statistical Association , 104:623-637. · Zbl 1388.62340
[43] Zhu, H. T., Zhang, H. P., Ibrahim, J. G., and Peterson, B. (2007). Statistical analysis of diffusion tensors in diffusion-weighted magnetic resonance image data. Journal of the American Statistical Association , 102:1081-1110. · Zbl 1332.62222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.