×

zbMATH — the first resource for mathematics

On the sphericity test with large-dimensional observations. (English) Zbl 1293.62127
Summary: In this paper, we propose corrections to the likelihood ratio test and John’s test for sphericity in large-dimensions. New formulas for the limiting parameters in the CLT for linear spectral statistics of sample covariance matrices with general fourth moments are first established. Using these formulas, we derive the asymptotic distribution of the two proposed test statistics under the null. These asymptotics are valid for general population, i.e. not necessarily Gaussian, provided a finite fourth-moment. Extensive Monte-Carlo experiments are conducted to assess the quality of these tests with a comparison to several existing methods from the literature. Moreover, we also obtain their asymptotic power functions under the alternative of a spiked population model as a specific alternative.

MSC:
62H15 Hypothesis testing in multivariate analysis
62H10 Multivariate distribution of statistics
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Anderson, T.W. (1984). An introduction to Multivariate Statistical Analysis (2nd edition). Wiley, New York. · Zbl 0651.62041
[2] Bai, Z.D. and Silverstein, J.W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. , 32 , 553-605. · Zbl 1063.60022
[3] Bai, Z.D. and Yao, J.F. (2005). On the convergence of the spectral empirical process of Wigner matrices. Bernoulli , 11 (6), 1059-1092. · Zbl 1101.60012
[4] Bai, Z.D., Jiang, D.D., Yao, J.F., and Zheng, S.R. (2009). Corrections to LRT on large-dimensional covariance matrix by RMT. Ann. Statist. , 37 , 3822-3840. · Zbl 1360.62286
[5] Bai, Z.D. and Silverstein, J.W. (2010). Spectral Analysis of Large Dimensional Random Matrices (2nd edition). Springer, 20. · Zbl 1301.60002
[6] Bai, Z.D., Jiang, D.D., Yao, J.F., and Zheng, S.R. (2012). Testing linear hypotheses in high-dimensional regressions. Statistics , doi:10.1080/02331888.2012.708031. · Zbl 1440.62215
[7] Birke, M. and Dette, H. (2005). A note on testing the covariance matrix for large dimension. Statistics and Probability Letters , 74 , 281-289. · Zbl 1070.62046
[8] Chen, S.X. and Qin, Y.L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Statist. , 38 , 808-835. · Zbl 1183.62095
[9] Chen, S.X., Zhang, L.X., and Zhong, P.S. (2010). Tests for high-dimensional covariance matrices. J. Amer. Statist. Assoc. , 105 , 810-819. · Zbl 1321.62086
[10] John, S. (1971). Some optimal multivariate tests. Biometrika , 58 , 123-127. · Zbl 0218.62055
[11] John, S. (1972). The distribution of a statistic used for testing sphericity of normal distributions. Biometrika , 59 , 169-173. · Zbl 0231.62072
[12] Jonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. , 12 (1), 1-38. · Zbl 0491.62021
[13] Johnstone, I.M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. , 29 (2), 295-327. · Zbl 1016.62078
[14] Johnstone, I.M. and Titterington, D.M. (2009). Statistical challenges of high-dimensional data. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 367 , 4237-4253. · Zbl 1185.62007
[15] Ledoit, O. and Wolf, M. (2002). Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Statist. , 30 , 1081-1102. · Zbl 1029.62049
[16] Lytova, A. and Pastur, L. (2009). Central limit theorem for linear eigenvalue statistics of the Wigner and the sample covariance random matrices. Metrika , 69 , 153-172. · Zbl 1180.15029
[17] Mauchly, J.W. (1940). Test for sphericity of a normal n-variate distribution. Ann. Mathe. Statist. , 11 , 204-209. · Zbl 0023.24703
[18] Muirhead, R.J. (1982). Aspects of Multivariate Statistical Theory . Wiley, New York. · Zbl 0556.62028
[19] Nagao, H. (1973). On some test criteria for covariance matrix. Ann. Statist. , 1 , 700-709. · Zbl 0263.62034
[20] Onatski, A., Moreira, M.J., and Hallin, M. (2013). Asymptotic power of sphericity tests for high-dimensional data. Ann. Statist. , 41 (3), 1204-1231. · Zbl 1293.62125
[21] Pan, G.M. and Zhou, W. (2008). Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. , 18 , 1232-1270. · Zbl 1153.15315
[22] Pan, G.M. (2012). Comparision between two types of large sample covariance matrices. To appear in Ann. Institut Henri Poincaré .
[23] Schott, J.R. (2007). Some high-dimensional tests for a one-way MANOVA. J. Multivariate Anal. , 98 , 1825-1839. · Zbl 1130.62058
[24] Srivastava, M.S. (2005). Some tests concerning the covariance matrix in high dimensional data. J. Japan Statist. Soc. , 35 , 251-272.
[25] Srivastava, M.S. and Fujikoshi, Y. (2006). Multivariate analysis of variance with fewer observations than the dimension. J. Multiv. Anal. , 97 , 1927-1940. · Zbl 1101.62051
[26] Srivastava, M.S., Kollo, T., and Rosen, D. (2011). Some tests for the covariance matrix with fewer observations than the dimension under non-normality. J. Multiv. Anal. , 102 , 1090-1103. · Zbl 1274.62388
[27] Sugiura, N. (1972). Locally best invariant test for sphericity and the limiting distributions. Ann. Mathe. Statist. , 43 , 1312-1316. · Zbl 0251.62036
[28] Wang, Q.W., Silverstein, J.W., and Yao, J.F. (2013). A note on the CLT of the LSS for sample covariance matrix from a spiked population model. Preprint , available at · Zbl 1292.62085
[29] Zheng, S.R. (2012). Central limit theorem for linear spectral statistics of large dimensional \(F\) matrix. Ann. Institut Henri Poincaré Probab. Statist. , 48 , 444-476. · Zbl 1251.15039
[30] Zheng, S.R. and Bai, Z.D. (2013). A note on central limit theorems for linear spectral statistics of large dimensional \(F\) Matrix. Preprint , available at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.