×

zbMATH — the first resource for mathematics

A note on least squares sensitivity in single-index model estimation and the benefits of response transformations. (English) Zbl 1293.62141
Summary: Ordinary Least Squares (OLS) is recognised as being useful in the context of multiple linear regression but can also be effective under the more general framework of the single-index model. In cases where it is ineffective, transformations to the response can improve performance while still allowing for interpretation on the original scale. In this paper we introduce an influence diagnostic for OLS that can be used to assess its effectiveness in the general setting and which can also be used following response transformations. These findings are further emphasized and verified via some simulation studies.

MSC:
62J02 General nonlinear regression
62H12 Estimation in multivariate analysis
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Brillinger, D. R. 1977. The identification of a particular nonlinear time series system. Biometrika , 64 , 509-515. · Zbl 0388.62084
[2] Brillinger, D. R. 1983. A generalized linear model with “Gaussian” regressor variables. Pages 97-114 of: A Festschrift for Erich L. Lehmann . Wadsworth Statist./Probab. Ser. Belmont, CA: Wadsworth. · Zbl 0519.62050
[3] Carroll, R. J., & Li, K.-C. 1992. Measurement error regression with unknown link: dimension reduction and data visualization. J. Amer. Statist. Assoc. , 87 (420), 1040-1050. · Zbl 0765.62002
[4] Chatterjee, S., & Hadi, A. S. 1988. Sensitivity analysis in linear regression . Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. New York: John Wiley & Sons Inc. · Zbl 0648.62066
[5] Cook, R. D. 1998. Regression graphics . New York: John Wiley & Sons Inc. Ideas for studying regressions through graphics. · Zbl 0903.62001
[6] Cook, R. D., & Weisberg, S. 1991. Discussion of “Sliced inverse regression for dimension reduction.” J. Amer. Statist. Assoc. , 86 , 328-332. · Zbl 1353.62037
[7] Critchley, F. 1985. Influence in principal components analysis. Biometrika , 72 (3), 627-636. · Zbl 0608.62068
[8] Cuzick, J. 1988. Rank regression. Ann. Statist. , 16 , 1369-1389. · Zbl 0653.62031
[9] Golub, G. H., & Van Loan, C. F. 1996. Matrix computations . Third edn. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press. · Zbl 0865.65009
[10] Hall, P., & Li, K.-C. 1993. On almost linearity of low-dimensional projections from high-dimensional data. Ann. Statist. , 21 , 867-889. · Zbl 0782.62065
[11] Hampel, F. R. 1974. The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. , 69 , 383-393. · Zbl 0305.62031
[12] Hettmansperger, T. P., & McKean, J. W. 1998. Robust nonparametric statistical methods . London: Arnold. · Zbl 0887.62056
[13] Li, K.-C. 1991. Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. , 86 , 316-327. · Zbl 0742.62044
[14] Li, K.-C. 1992. On principal Hessian directions for data visualization and dimension reduction: another application of Stein’s lemma. J. Amer. Statist. Assoc. , 87 , 1025-1039. · Zbl 0765.62003
[15] Li, K.-C., & Duan, N. 1989. Regression analysis under link violation. Ann. Statist. , 17 , 1009-1052. · Zbl 0753.62041
[16] Patel, J. K., & Read, C. B. 1982. Handbook of the normal distribution . Statistics: Textbooks and Monographs, vol. 40. New York: Marcel Dekker Inc. · Zbl 0511.60012
[17] Prendergast, L. A. 2008. Trimming influential observations for improved single-index model estimated sufficient summary plots. Comput. Statist. Data Anal. , 52 , 5319-5327. · Zbl 1452.62113
[18] Prendergast, L. A., & Smith, J. A. 2010. Influence functions for dimension reduction methods: an example influence study of principal Hessian direction analysis. Scand. J. Stat. , 37 , 588-611. · Zbl 1226.62064
[19] Prendergast, L. A., & Sheather, S. J. 2013. On sensitivity of inverse response plot estimation and the benefits of a robust estimation approach. Scand. J. Stat. , 40 (2), 219-237. · Zbl 1328.62401
[20] Staudte, R. G., & Sheather, S. J. 1990. Robust estimation and testing . New York: John Wiley & Sons Inc. · Zbl 0706.62037
[21] Stein, C. M. 1981. Estimation of the mean of a multivariate normal distribution. Ann. statist. , 9 (6), 1135-1151. · Zbl 0476.62035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.