×

A splitting iterative method for the discrete dynamic linear systems. (English) Zbl 1293.65050

Summary: This paper is concerned with a splitting iterative method for a class of complex symmetric linear systems from an \(n\)-degree-of-freedom (\(n\)-DOF) discrete system. This splitting iterative method is established by the complex-symmetric and skew-Hermitian splitting of the coefficient matrix and is called the CSS method, which is from the classical state-space formulation of frequency analysis of the discrete dynamic linear systems. The convergence properties of the CSS method are obtained. The corresponding CSS preconditioner is proposed and some useful properties of the preconditioned matrix are established. The presented numerical examples are to illustrate the efficiency of both the CSS method and the CSS preconditioner.

MSC:

65F10 Iterative numerical methods for linear systems
65F50 Computational methods for sparse matrices
15B57 Hermitian, skew-Hermitian, and related matrices
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Feriani, A.; Perotti, F.; Simoncini, V., Iterative system solvers for the frequency analysis of linear mechanical systems, Comput Methods Appl. Mech. Engrg, 190, 1719-1739 (2000) · Zbl 0981.70005
[2] Bai, Z.-Z.; Benzi, M.; Chen, F., Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87, 93-111 (2010) · Zbl 1210.65074
[3] Bai, Z.-Z.; Benzi, M.; Chen, F., On preconditioned MHSS iteration methods for complex symmetric linear systems, Numer. Algorithms, 56, 297-317 (2011) · Zbl 1209.65037
[4] Bayliss, A.; Goldstein, C. I.; Turkel, E., An iterative method for Helmholtz equation, J. Comput. Phys., 49, 443-457 (1983) · Zbl 0524.65068
[5] Guo, C.-H., Incomplete block factorization preconditioner for linear systems arising in the numerical solution of the Helmholtz equation, Appl. Numer. Math., 19, 495-508 (1996) · Zbl 0854.65086
[6] Wu, S.-L.; Huang, T.-Z.; Li, L.; Xiong, L.-L., Positive stable preconditioners for symmetric indefinite linear systems arising from Helmholtz equations, Phys. Lett. A., 373, 2401-2407 (2009) · Zbl 1231.78010
[7] Wu, S.-L.; Li, C.-X., A modified SSOR preconditioning strategy for Helmholtz equations, J. Appl. Math., 2012, 9 pages (2012), Article ID 365124 · Zbl 1235.65126
[8] Li, L.; Huang, T.-Z.; Jing, Y.-F.; Zhang, Y., Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems, Comput. Phys. Comm., 181, 271-276 (2010) · Zbl 1205.78059
[9] Day, D. D.; Heroux, M. A., Solving complex-valued linear systems via equivalent real formulations, SIAM J. Sci. Comput., 23, 480-498 (2001) · Zbl 0992.65020
[10] Bai, Z.-Z., Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models, Numer. Linear Algebra Appl., 19, 914-936 (2012) · Zbl 1289.65048
[11] Sogabe, T.; Zhang, S.-L., A COCR method for solving complex symmetric linear systems, J. Comput. Appl. Math., 199, 297-303 (2007) · Zbl 1108.65028
[12] Benzi, M.; Bertaccini, D., Block preconditioning of real-valued iterative algorithms for complex linear systems, IMA J. Numer. Anal., 28, 598-618 (2008) · Zbl 1145.65022
[13] van der Vorst, H. A.; Melissen, J. B.M., A Petrov-Galerkin type method for solving \(A x = b\), where \(A\) is symmetric complex, IEEE Trans. Mag., 26, 706-708 (1990)
[14] Hestenes, M. R.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards., 49, 409-436 (1952) · Zbl 0048.09901
[15] Freund, R. W., Conjugate Gradient-type methods for linear systems with complex symmetric coefficient matrices, SIAM J. Sci. Stat. Comput., 13, 425-448 (1992) · Zbl 0761.65018
[16] Bunse-Gerstner, A.; Stöver, R., On a conjugate gradient-type method for solving complex symmetric linear systems, Linear Algbra Appl., 287, 105-123 (1999) · Zbl 0941.65031
[17] Axelsson, O.; Kucherov, A., Real valued iterative methods for solving complex symmetric linear systems, Numer. Linear Algebra Appl., 7, 197-218 (2000) · Zbl 1051.65025
[18] Freund, R. W., On Conjugate Gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices, Numer. Math., 57, 285-312 (1990) · Zbl 0702.65034
[19] Simoncini, V.; Szyld, D. B., Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14, 1-59 (2007) · Zbl 1199.65112
[20] Bai, Z.-Z.; Benzi, M.; Chen, F.; Wang, Z.-Q., Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33, 343-369 (2013) · Zbl 1271.65100
[21] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626 (2003) · Zbl 1036.65032
[22] Bai, Z.-Z., Several splittings for non-Hermitian linear systems, Sci. Chin. Ser. A: Math., 51, 1339-1348 (2008) · Zbl 1168.65014
[23] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428, 413-440 (2008) · Zbl 1135.65016
[24] Bai, Z.-Z.; Golub, G. H.; Pan, J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98, 1-32 (2004) · Zbl 1056.65025
[25] Bai, Z.-Z.; Golub, G. H.; Li, C.-K., Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 28, 583-603 (2006) · Zbl 1116.65039
[26] Bai, Z.-Z., Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16, 447-479 (2009) · Zbl 1224.65081
[27] Bai, Z.-Z.; Golub, G. H.; Ng, M. K., On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14, 319-335 (2007) · Zbl 1199.65097
[28] Bai, Z.-Z.; Golub, G. H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27, 1-23 (2007) · Zbl 1134.65022
[29] Li, C.-X.; Wu, S.-L., A modified GHSS method for non-Hermitian positive definite linear systems, Japan J. Indust. Appl. Math., 29, 253-268 (2012) · Zbl 1267.65038
[30] Benzi, M., A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl., 31, 360-374 (2009) · Zbl 1191.65025
[31] Benzi, M.; Golub, G. H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26, 20-41 (2004) · Zbl 1082.65034
[32] Li, L.; Huang, T.-Z., Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems, Comput. Math. Appl., 54, 147-159 (2007) · Zbl 1127.65019
[33] Li, W.; Liu, Y.-P.; Peng, X.-F., The generalized HSS method for solving singular linear systems, J. Comput. Appl. Math., 236, 2338-2353 (2012) · Zbl 1242.65061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.