×

State-feedback stabilization for a class of stochastic feedforward nonlinear time-delay systems. (English) Zbl 1293.93612

Summary: We investigate the state-feedback stabilization problem for a class of stochastic feedforward nonlinear time-delay systems. By using the homogeneous domination approach and choosing an appropriate Lyapunov-Krasovskii functional, the delay-independent state-feedback controller is explicitly constructed such that the closed-loop system is globally asymptotically stable in probability. A simulation example is provided to demonstrate the effectiveness of the proposed design method.

MSC:

93D15 Stabilization of systems by feedback
93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
93D20 Asymptotic stability in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Duan, N.; Xie, X.-J., Further results on output-feedback stabilization for a class of stochastic nonlinear systems, IEEE Transactions on Automatic Control, 56, 5, 1208-1213 (2011) · Zbl 1368.93533 · doi:10.1109/TAC.2011.2107112
[2] Krstić, M.; Deng, H., Stabilization of Uncertain Nonlinear Systems (1998), New York, NY, USA: Springer, New York, NY, USA · Zbl 0906.93001
[3] Kuang, S.; Peng, Y.; Deng, F.; Gao, W., Exponential stability and numerical methods of stochastic recurrent neural networks with delays, Abstract and Applied Analysis, 2013 (2013) · Zbl 1470.65010 · doi:10.1155/2013/761237
[4] Li, W.-Q.; Xie, X.-J., Inverse optimal stabilization for stochastic nonlinear systems whose linearizations are not stabilizable, Automatica, 45, 2, 498-503 (2009) · Zbl 1158.93411 · doi:10.1016/j.automatica.2008.08.006
[5] Liu, L.; Xie, X.-J., Output-feedback stabilization for stochastic high-order nonlinear systems with time-varying delay, Automatica, 47, 12, 2772-2779 (2011) · Zbl 1235.93208 · doi:10.1016/j.automatica.2011.09.014
[6] Liu, S.-J.; Ge, S. S.; Zhang, J.-F., Adaptive output-feedback control for a class of uncertain stochastic non-linear systems with time delays, International Journal of Control, 81, 8, 1210-1220 (2008) · Zbl 1152.93404 · doi:10.1080/00207170701598478
[7] Liu, S.-J.; Zhang, J.-F.; Jiang, Z.-P., Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43, 2, 238-251 (2007) · Zbl 1115.93076 · doi:10.1016/j.automatica.2006.08.028
[8] Liu, Y.-G.; Zhang, J.-F., Practical output-feedback risk-sensitive control for stochastic nonlinear systems with stable zero-dynamics, SIAM Journal on Control and Optimization, 45, 3, 885-926 (2006) · Zbl 1117.93067 · doi:10.1137/S0363012903439185
[9] Wu, L.; Shi, P.; Gao, H., State estimation and sliding-mode control of Markovian jump singular systems, IEEE Transactions on Automatic Control, 55, 5, 1213-1219 (2010) · Zbl 1368.93696 · doi:10.1109/TAC.2010.2042234
[10] Wu, Z.-J.; Xie, X.-J.; Zhang, S.-Y., Adaptive backstepping controller design using stochastic small-gain theorem, Automatica, 43, 4, 608-620 (2007) · Zbl 1114.93104 · doi:10.1016/j.automatica.2006.10.020
[11] Wu, Z.-J.; Xie, X.-J.; Shi, P.; Xia, Y.-Q., Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching, Automatica, 45, 4, 997-1004 (2009) · Zbl 1162.93044 · doi:10.1016/j.automatica.2008.12.002
[12] Xie, X.-J.; Duan, N., Output tracking of high-order stochastic nonlinear systems with application to benchmark mechanical system, IEEE Transactions on Automatic Control, 55, 5, 1197-1202 (2010) · Zbl 1368.93229 · doi:10.1109/TAC.2010.2043004
[13] Xie, X.-J.; Liu, L., Further results on output feedback stabilization for stochastic high-order nonlinear systems with time-varying delay, Automatica, 48, 10, 2577-2586 (2012) · Zbl 1271.93122 · doi:10.1016/j.automatica.2012.06.061
[14] Xie, X.-J.; Liu, L., A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems with time-varying delay, IEEE Transactions on Automatic Control, 58, 2, 494-499 (2013) · Zbl 1369.93513 · doi:10.1109/TAC.2012.2208297
[15] Xie, X.-J.; Tian, J., Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization, Automatica, 45, 1, 126-133 (2009) · Zbl 1154.93427 · doi:10.1016/j.automatica.2008.10.006
[16] Yin, S.; Ding, S. X.; Sari, A. H. A.; Hao, H., Data-driven monitoring for stochastic systems and its application on batch process, International Journal of Systems Science, 44, 7, 1366-1376 (2013) · Zbl 1278.93259 · doi:10.1080/00207721.2012.659708
[17] Yu, X.; Xie, X.-J., Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics, IEEE Transactions on Automatic Control, 55, 2, 304-320 (2010) · Zbl 1368.93584 · doi:10.1109/TAC.2009.2034924
[18] Zhao, X.; Ling, M.; Zeng, Q., Delay-dependent robust control for uncertain stochastic systems with Markovian switching and multiple delays, Journal of Systems Engineering and Electronics, 21, 2, 287-295 (2010) · doi:10.3969/j.issn.1004-4132.2010.02.019
[19] Zhou, X.; Ren, Y.; Zhong, S., BIBO stabilization of discrete-time stochastic control systems with mixed delays and nonlinear perturbations, Abstract and Applied Analysis, 2013 (2013) · Zbl 1421.93129 · doi:10.1155/2013/916357
[20] Mazenc, F.; Bowong, S., Tracking trajectories of the cart-pendulum system, Automatica, 39, 4, 677-684 (2003) · Zbl 1022.93022 · doi:10.1016/S0005-1098(02)00279-0
[21] Sepulchre, R.; Janković, M.; Kokotović, P. V., Constructive Nonlinear Control (1997), London, UK: Springer, London, UK · Zbl 1067.93500 · doi:10.1007/978-1-4471-0967-9
[22] Bekiaris-Liberis, N.; Krstić, M., Delay-adaptive feedback for linear feedforward systems, Systems & Control Letters, 59, 5, 277-283 (2010) · Zbl 1191.93070 · doi:10.1016/j.sysconle.2010.03.001
[23] Ding, S.; Qian, C.; Li, S.; Li, Q., Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations, International Journal of Robust and Nonlinear Control, 21, 3, 271-294 (2011) · Zbl 1213.93182 · doi:10.1002/rnc.1591
[24] Isidori, A., Nonlinear Control Systems (1999), London, UK: Springer, London, UK · Zbl 0924.93038 · doi:10.1007/978-1-4471-0549-7
[25] Krstić, M., Input delay compensation for forward complete and strict-feedforward nonlinear systems, IEEE Transactions on Automatic Control, 55, 2, 287-302 (2010) · Zbl 1368.93546 · doi:10.1109/TAC.2009.2034923
[26] Qian, C.; Li, J., Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach, International Journal of Robust and Nonlinear Control, 16, 9, 441-463 (2006) · Zbl 1123.93081 · doi:10.1002/rnc.1074
[27] Ye, X., Adaptive stabilization of time-delay feedforward nonlinear systems, Automatica, 47, 5, 950-955 (2011) · Zbl 1233.93082 · doi:10.1016/j.automatica.2011.01.006
[28] Zhang, X.; Baron, L.; Liu, Q.; Boukas, E.-K., Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems, IEEE Transactions on Automatic Control, 56, 3, 692-697 (2011) · Zbl 1368.93587 · doi:10.1109/TAC.2010.2097150
[29] Zhang, X.; Liu, Q.; Baron, L.; Boukas, E.-K., Feedback stabilization for high order feedforward nonlinear time-delay systems, Automatica, 47, 5, 962-967 (2011) · Zbl 1233.93079 · doi:10.1016/j.automatica.2011.01.018
[30] Liu, L.; Xie, X.-J., State feedback stabilization for stochastic feedforward nonlinear systems with time-varying delay, Automatica, 49, 4, 936-942 (2013) · Zbl 1284.93187 · doi:10.1016/j.automatica.2013.01.007
[31] Khalil, H. K., Nonlinear Systems (2002), Upper Saddle River, NJ, USA: Prentice-Hall, Upper Saddle River, NJ, USA · Zbl 1003.34002
[32] Zhang, L.; Gao, H., Asynchronously switched control of switched linear systems with average dwell time, Automatica, 46, 5, 953-958 (2010) · Zbl 1191.93068 · doi:10.1016/j.automatica.2010.02.021
[33] Dong, H. L.; Wang, Z. D.; Gao, H. J., Distributed \(H_\infty\) filtering for a class of markovian jump nonlinear time-delay systems over lossy sensor networks, IEEE Transactions on Industrial Electronics, 60, 10, 4665-4672 (2013)
[34] Xie, X. C.; Yin, S.; Gao, H. J.; Kaynak, O., Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays, IET Control Theory and Applications, 7, 8, 1071-1078 (2013)
[35] Yin, S.; Ding, S. X.; Luo, H., Real-time implementation of fault tolerant control system with performance optimization, IEEE Transactions on Industrial Electronics, 61, 5, 2402-2411 (2014)
[36] Gao, H.; Chen, T., \(H_\infty\) estimation for uncertain systems with limited communication capacity, IEEE Transactions on Automatic Control, 52, 11, 2070-2084 (2007) · Zbl 1366.93155 · doi:10.1109/TAC.2007.908316
[37] Gao, H.; Chen, T.; Lam, J., A new delay system approach to network-based control, Automatica, 44, 1, 39-52 (2008) · Zbl 1138.93375 · doi:10.1016/j.automatica.2007.04.020
[38] Gao, H.; Chen, T., Network-based \(H_\infty\) output tracking control, IEEE Transactions on Automatic Control, 53, 3, 655-667 (2008) · Zbl 1367.93175 · doi:10.1109/TAC.2008.919850
[39] Gao, H.; Meng, X.; Chen, T., Stabilization of networked control systems with a new delay characterization, IEEE Transactions on Automatic Control, 53, 9, 2142-2148 (2008) · Zbl 1367.93696 · doi:10.1109/TAC.2008.930190
[40] Li, H.; Gao, H.; Shi, P., New passivity analysis for neural networks with discrete and distributed delays, IEEE Transactions on Neural Networks, 21, 11, 1842-1847 (2010) · doi:10.1109/TNN.2010.2059039
[41] Qiu, J.; Feng, G.; Gao, H., Fuzzy-model-based piecewise \(H_\infty\) static-output-feedback controller design for networked nonlinear systems, IEEE Transactions on Fuzzy Systems, 18, 5, 919-934 (2010) · doi:10.1109/TFUZZ.2010.2052259
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.