×

Three solutions for inequalities Dirichlet problem driven by \(p(x)\)-Laplacian-like. (English) Zbl 1294.35022

Summary: A class of nonlinear elliptic problems driven by \(p(x)\)-Laplacian-like with a nonsmooth locally Lipschitz potential is considered. Applying the version of a nonsmooth three-critical-point theorem, existence of three solutions of the problem is proved.

MSC:

35J60 Nonlinear elliptic equations

References:

[1] Chang, K. C., Variational methods for nondifferentiable functionals and their applications to partial differential equations, Journal of Mathematical Analysis and Applications, 80, 1, 102-129 (1981) · Zbl 0487.49027 · doi:10.1016/0022-247X(81)90095-0
[2] Kourogenis, N. C.; Papageorgiou, N. S., Nonsmooth critical point theory and nonlinear elliptic equations at resonance, Australian Mathematical Society Journal A, 69, 2, 245-271 (2000) · Zbl 0964.35055 · doi:10.1017/S1446788700002202
[3] Kandilakis, D.; Kourogenis, N. C.; Papageorgiou, N. S., Two nontrivial critical points for nonsmooth functionals via local linking and applications, Journal of Global Optimization, 34, 2, 219-244 (2006) · Zbl 1105.49019 · doi:10.1007/s10898-005-3884-7
[4] Ricceri, B., A general variational principle and some of its applications, Journal of Computational and Applied Mathematics, 113, 1-2, 401-410 (2000) · Zbl 0946.49001 · doi:10.1016/S0377-0427(99)00269-1
[5] Marano, S. A.; Motreanu, D., Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the \(p\)-Laplacian, Journal of Differential Equations, 182, 1, 108-120 (2002) · Zbl 1013.49001 · doi:10.1006/jdeq.2001.4092
[6] Ruzicka, M., Electrortheological Fluids: Modeling and Mathematical Theory (2000), Berlin: Springer, Berlin · Zbl 0962.76001 · doi:10.1007/BFb0104029
[7] Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Mathematics of the USSR-Izvestiya, 29, 1, 33-66 (1987) · Zbl 0599.49031
[8] Fan, X., On the sub-supersolution method for \(p(x)\)-Laplacian equations, Journal of Mathematical Analysis and Applications, 330, 1, 665-682 (2007) · Zbl 1206.35103 · doi:10.1016/j.jmaa.2006.07.093
[9] Fan, X.; Zhang, Q.; Zhao, D., Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem, Journal of Mathematical Analysis and Applications, 302, 2, 306-317 (2005) · Zbl 1072.35138 · doi:10.1016/j.jmaa.2003.11.020
[10] Fan, X.-L.; Zhang, Q.-H., Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Analysis: Theory, Methods and Applications A, 52, 8, 1843-1852 (2003) · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[11] Fan, X. L.; Zhao, D., On the generalized Orlicz-sobolev spaces \(W^{k, p \left(x\right)}(\Omega)\), Journal of Gansu Education College, 12, 1, 1-6 (1998)
[12] Fan, X.; Zhao, D., On the spaces \(L^{p(x)}\) and \(W^{\operatorname{m,p}(x)} \), Journal of Mathematical Analysis and Applications, 263, 2, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[13] Liu, S., Multiple solutions for coercive \(p\)-Laplacian equations, Journal of Mathematical Analysis and Applications, 316, 1, 229-236 (2006) · Zbl 1148.35321 · doi:10.1016/j.jmaa.2005.04.034
[14] Dai, G., Three solutions for a Neumann-type differential inclusion problem involving the \(p(x)\)-Laplacian, Nonlinear Analysis: Theory, Methods and Applications A, 70, 10, 3755-3760 (2009) · Zbl 1163.35501 · doi:10.1016/j.na.2008.07.031
[15] Bonanno, G.; Chinnì, A., Discontinuous elliptic problems involving the \(p(x)\)-Laplacian, Mathematische Nachrichten, 284, 5-6, 639-652 (2011) · Zbl 1214.35076 · doi:10.1002/mana.200810232
[16] Bonanno, G.; Chinnì, A., Multiple solutions for elliptic problems involving the \(p(x)\)-Laplacian, Le Matematiche, 66, 1, 105-113 (2011)
[17] Bonanno, G.; Chinnì, A., Existence results of infinitely many solutions for \(p(x)\)-Laplacian elliptic Dirichlet problems, Complex Variables and Elliptic Equations, 57, 11, 1233-1246 (2012) · Zbl 1258.35096 · doi:10.1080/17476933.2012.662225
[18] Chinnì, A.; Livrea, R., Multiple solutions for a Neumann-type differential inclusion problem involving the \(p(·)\)-Laplacian, Discrete and Continuous Dynamical Systems. Series S, 5, 4, 753-764 (2012) · Zbl 1255.35089
[19] Rodrigues, M. M., Multiplicity of solutions on a nonlinear eigenvalue problem for \(p(x)\)-Laplacian-like operators, Mediterranean Journal of Mathematics, 9, 1, 211-223 (2012) · Zbl 1245.35061 · doi:10.1007/s00009-011-0115-y
[20] Marano, S. A.; Motreanu, D., On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Analysis: Theory, Methods and Applications A, 48, 1, 37-52 (2002) · Zbl 1014.49004 · doi:10.1016/S0362-546X(00)00171-1
[21] Ricceri, B., On a three critical points theorem, Archiv der Mathematik, 75, 3, 220-226 (2000) · Zbl 0979.35040 · doi:10.1007/s000130050496
[22] Bonanno, G.; Giovannelli, N., An eigenvalue Dirichlet problem involving the \(p\)-Laplacian with discontinuous nonlinearities, Journal of Mathematical Analysis and Applications, 308, 2, 596-604 (2005) · Zbl 1160.35419 · doi:10.1016/j.jmaa.2004.11.053
[23] Bonanno, G.; Candito, P., On a class of nonlinear variational-hemivariational inequalities, Applicable Analysis, 83, 12, 1229-1244 (2004) · Zbl 1149.35354 · doi:10.1080/00036810410001724607
[24] Kristály, A., Infinitely many solutions for a differential inclusion problem in \(\mathbb{R}^N\), Journal of Differential Equations, 220, 2, 511-530 (2006) · Zbl 1194.35523 · doi:10.1016/j.jde.2005.02.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.