×

Exact solutions of the cubic-quintic Swift-Hohenberg equation and their bifurcations. (English) Zbl 1294.35102

Summary: Many systems of physical interest may be modelled by the bistable Swift-Hohenberg equation with cubic-quintic nonlinearity. We construct a two-parameter family of exact meromorphic solutions of the time-independent equation and use these to construct a one-parameter family of exact periodic solutions on the real line. These are of two types, differing in their symmetry properties, and are connected via an exact heteroclinic solution. We use these exact solutions as initial points for numerical continuation and show that some of these lie on secondary branches while others fall on isolas. The approach substantially enhances our understanding of the solution space of this equation.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q60 PDEs in connection with optics and electromagnetic theory
35B32 Bifurcations in context of PDEs
35B10 Periodic solutions to PDEs
35B35 Stability in context of PDEs
34C23 Bifurcation theory for ordinary differential equations

Software:

AUTO-07P; AUTO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevA.15.319 · doi:10.1103/PhysRevA.15.319
[2] DOI: 10.1016/j.physd.2010.08.009 · Zbl 1372.76097 · doi:10.1016/j.physd.2010.08.009
[3] DOI: 10.1103/PhysRevLett.73.2978 · doi:10.1103/PhysRevLett.73.2978
[4] DOI: 10.1103/PhysRevA.54.4581 · doi:10.1103/PhysRevA.54.4581
[5] DOI: 10.1016/0375-9601(80)90568-X · doi:10.1016/0375-9601(80)90568-X
[6] van den Berg G JB, Dynamics and equilibria of fourth order differential equations [PhD Thesis] (2000)
[7] Peletier L A, Spatial patterns (2001) · doi:10.1007/978-1-4612-0135-9
[8] DOI: 10.1103/PhysRevE.73.056211 · doi:10.1103/PhysRevE.73.056211
[9] DOI: 10.1016/j.physleta.2006.08.072 · Zbl 1236.35144 · doi:10.1016/j.physleta.2006.08.072
[10] DOI: 10.1016/0167-2789(96)00077-2 · doi:10.1016/0167-2789(96)00077-2
[11] DOI: 10.1103/PhysRevA.38.5461 · doi:10.1103/PhysRevA.38.5461
[12] DOI: 10.1103/PhysRevE.50.1194 · doi:10.1103/PhysRevE.50.1194
[13] DOI: 10.1007/BF03167476 · Zbl 1067.65146 · doi:10.1007/BF03167476
[14] DOI: 10.1137/080724344 · Zbl 1167.76016 · doi:10.1137/080724344
[15] DOI: 10.1017/S0022112006000759 · Zbl 1122.76029 · doi:10.1017/S0022112006000759
[16] DOI: 10.1063/1.3439672 · Zbl 1190.76077 · doi:10.1063/1.3439672
[17] DOI: 10.1017/S0022112010004623 · Zbl 1225.76107 · doi:10.1017/S0022112010004623
[18] DOI: 10.1017/jfm.2013.77 · Zbl 1287.76105 · doi:10.1017/jfm.2013.77
[19] DOI: 10.1063/1.3626405 · Zbl 06423170 · doi:10.1063/1.3626405
[20] Eremenko A, J Math Phys Anal Geom 2 pp 278– (2006)
[21] DOI: 10.1016/j.cnsns.2010.06.035 · Zbl 1221.34233 · doi:10.1016/j.cnsns.2010.06.035
[22] DOI: 10.1111/j.1467-9590.2012.00546.x · Zbl 1250.35151 · doi:10.1111/j.1467-9590.2012.00546.x
[23] DOI: 10.1016/j.cnsns.2011.04.008 · Zbl 1245.35095 · doi:10.1016/j.cnsns.2011.04.008
[24] Abramowitz M, Stegun IA (1972)
[25] DOI: 10.1103/PhysRevE.80.036202 · doi:10.1103/PhysRevE.80.036202
[26] DOI: 10.1006/jcph.2002.6995 · Zbl 1005.65069 · doi:10.1006/jcph.2002.6995
[27] Doedel E J, AUTO-07p: Continuation and bifurcation software for ordinary differential equations (2007)
[28] DOI: 10.1103/PhysRevLett.97.254501 · doi:10.1103/PhysRevLett.97.254501
[29] DOI: 10.1088/0951-7715/6/5/002 · Zbl 0789.58035 · doi:10.1088/0951-7715/6/5/002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.