×

The existence of positive solutions for a new coupled system of multiterm singular fractional integrodifferential boundary value problems. (English) Zbl 1294.45005

Summary: We discuss the existence of positive solutions for the coupled system of multiterm singular fractional integrodifferential boundary value problems \[ D_{0^+}^\alpha u(t) + f_1(t,u(t),v(t),(\phi_1u)(t),(\psi_1v)(t),D_{0^+}^p u(t),D_{0^+}^{u_1} v(t),D_{0^+}^{u_2} v(t),\dots,D_{0^+}^{u_m} v(t)) = 0, \]
\[ D_{0^+}^\beta v(t) + f_2(t,u(t),v(t),(\phi_2u)(t),(\psi_2v)(t),D_{0^+}^q u(t),D_{0^+}^{v_1} u(t),D_{0^+}^{v_2} u(t),\dots,D_{0^+}^{v_m} u(t)) = 0, \] \(u^{(i)} = 0\) and \(v^{(i)} = 0\) for all \(0 \leq i \leq n-2\), \([D_{0^+}^{\delta_1}u(t)]_{t=1} = 0\) for \(2<\delta_1<n-1\) and \(\alpha-\delta_1 \geq 1\), \([D_{0^+}^{\delta_2}v(t)]_{t=1} = 0\) for \(2<\delta_2<n-1\) and \(\beta-\delta_2 \geq 1\), where \(n\geq 4\), \(n-1<\alpha,\beta<n\), \(0<p,q<1\), \(1<\mu_i,\nu_i<2\) \((i=1,2,\dots,m)\), \(\gamma_j,\lambda_j:[0,1] \times [0,1] \to (0,\infty)\) are continuous functions \((j=1,2)\) and \((\phi_j u)(t) = \int_0^t \gamma_j(t,s)u(s)ds\), \((\psi_j v)(t) = \int_0^t \lambda_j(t,s)v(s)ds\). Here \(D\) is the standard Riemann-Liouville fractional derivative, \(f_j\) \((j=1,2)\) is a Caratheodory function, and \(f_j(t,x,y,z,w,v,u_1,u_2,\dots,u_m)\) is singular at the value 0 of its variables.

MSC:

45M20 Positive solutions of integral equations
45G05 Singular nonlinear integral equations
45G15 Systems of nonlinear integral equations
26A33 Fractional derivatives and integrals

References:

[1] Agarwal, R. P.; O’Regan, D.; Staněk, S., Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, Journal of Mathematical Analysis and Applications, 371, 1, 57-68 (2010) · Zbl 1206.34009 · doi:10.1016/j.jmaa.2010.04.034
[2] Agarwal, R. P.; O’Regan, D.; Staněk, S., Positive solutions for mixed problems of singular fractional differential equations, Mathematische Nachrichten, 285, 1, 27-41 (2012) · Zbl 1232.26005 · doi:10.1002/mana.201000043
[3] Agarwal, R. P.; Zhou, Y.; He, Y., Existence of fractional neutral functional differential equations, Computers & Mathematics with Applications, 59, 3, 1095-1100 (2010) · Zbl 1189.34152 · doi:10.1016/j.camwa.2009.05.010
[4] Ahmad, B.; Alsaedi, A., Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations, Fixed Point Theory and Applications, 2010 (2010) · Zbl 1208.34001
[5] Ahmad, B.; Nieto, J. J., Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Computers & Mathematics with Applications, 58, 9, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[6] Bai, C.-Z.; Fang, J.-X., The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Applied Mathematics and Computation, 150, 3, 611-621 (2004) · Zbl 1061.34001 · doi:10.1016/S0096-3003(03)00294-7
[7] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[8] Bai, Z.; Sun, W., Existence and multiplicity of positive solutions for singular fractional boundary value problems, Computers & Mathematics with Applications, 63, 9, 1369-1381 (2012) · Zbl 1247.34006 · doi:10.1016/j.camwa.2011.12.078
[9] Baleanu, D.; Agarwal, R. P.; Mohammadi, H.; Rezapour, S., Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Boundary Value Problems, 2013, article 112 (2013) · Zbl 1301.34007 · doi:10.1186/1687-2770-2013-112
[10] Baleanu, D.; Mohammadi, H.; Rezapour, Sh., Positive solutions of an initial value problem for nonlinear fractional differential equations, Abstract and Applied Analysis, 2012 (2012) · Zbl 1242.35215 · doi:10.1155/2012/837437
[11] Baleanu, D.; Rezapour, S.; Mohammadi, H., Some existence results on nonlinear fractional differential equations, Philosophical Transactions of the Royal Society of London A, 371, 1990 (2013) · Zbl 1342.34009 · doi:10.1098/rsta.2012.0144
[12] Baleanu, D.; Mohammadi, H.; Rezapour, S., On a nonlinear fractional differential equation on partially ordered metric spaces, Advances in Difference Equations, 2013, article 83 (2013) · Zbl 1380.34007 · doi:10.1186/1687-1847-2013-83
[13] Benchohra, M.; Hamani, S.; Ntouyas, S. K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis: Theory, Methods & Applications, 71, 7-8, 2391-2396 (2009) · Zbl 1198.26007 · doi:10.1016/j.na.2009.01.073
[14] Chang, Y.-K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Mathematical and Computer Modelling, 49, 3-4, 605-609 (2009) · Zbl 1165.34313 · doi:10.1016/j.mcm.2008.03.014
[15] Chen, F.; Zhou, Y., Attractivity of fractional functional differential equations, Computers & Mathematics with Applications, 62, 3, 1359-1369 (2011) · Zbl 1228.34017 · doi:10.1016/j.camwa.2011.03.062
[16] Feng, W.; Sun, S.; Han, Z.; Zhao, Y., Existence of solutions for a singular system of nonlinear fractional differential equations, Computers & Mathematics with Applications, 62, 3, 1370-1378 (2011) · Zbl 1228.34018 · doi:10.1016/j.camwa.2011.03.076
[17] Liu, Y.; Zhang, w.; Liu, X., A sufficient condition for the existence of a positive solution for a nonlinear fractional differential equation with the Riemann-Liouville derivative, Applied Mathematics Letters, 25, 11, 1986-1992 (2012) · Zbl 1254.34012 · doi:10.1016/j.aml.2012.03.018
[18] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[19] Staněk, S., The existence of positive solutions of singular fractional boundary value problems, Computers & Mathematics with Applications, 62, 3, 1379-1388 (2011) · Zbl 1228.34020 · doi:10.1016/j.camwa.2011.04.048
[20] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Applied Mathematics Letters, 22, 1, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[21] Sun, S.; Li, Q.; Li, Y., Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations, Computers & Mathematics with Applications, 64, 10, 3310-3320 (2012) · Zbl 1268.34028 · doi:10.1016/j.camwa.2012.01.065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.