×

Hyponormal Toeplitz operators on the Dirichlet spaces. (English) Zbl 1294.47040

Summary: We completely characterize the hyponormality of bounded Toeplitz operators with Sobolev symbols on the Dirichlet space and the harmonic Dirichlet space.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47B20 Subnormal operators, hyponormal operators, etc.
31C25 Dirichlet forms
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Yu, T., Toeplitz operators on the Dirichlet space, Integral Equations and Operator Theory, 67, 2, 163-170 (2010) · Zbl 1233.47026 · doi:10.1007/s00020-010-1754-2
[2] Cowen, C. C., Hyponormality of Toeplitz operators, Proceedings of the American Mathematical Society, 103, 3, 809-812 (1988) · Zbl 0668.47021 · doi:10.2307/2046858
[3] Hwang, I. S.; Lee, W. Y., Hyponormality of trigonometric Toeplitz operators, Transactions of the American Mathematical Society, 354, 6, 2461-2474 (2002) · Zbl 1011.47023 · doi:10.1090/S0002-9947-02-02970-7
[4] Zhu, K. H., Hyponormal Toeplitz operators with polynomial symbols, Integral Equations and Operator Theory, 21, 3, 376-381 (1995) · Zbl 0845.47022 · doi:10.1007/BF01299971
[5] Ahern, P.; Čučković, Ž., A mean value inequality with applications to Bergman space operators, Pacific Journal of Mathematics, 173, 2, 295-305 (1996) · Zbl 0962.47015
[6] Lu, Y. F.; Shi, Y. Y., Hyponormal Toeplitz operators on the weighted Bergman space, Integral Equations and Operator Theory, 65, 1, 115-129 (2009) · Zbl 1204.47038 · doi:10.1007/s00020-009-1712-z
[7] Hwang, I. S., Hyponormal Toeplitz operators on the Bergman space, Journal of the Korean Mathematical Society, 42, 2, 387-403 (2005) · Zbl 1085.47027 · doi:10.4134/JKMS.2005.42.2.387
[8] Hwang, I. S.; Lee, J., Hyponormal Toeplitz operators on the Bergman space. II, Bulletin of the Korean Mathematical Society, 44, 3, 517-522 (2007) · Zbl 1137.47023 · doi:10.4134/BKMS.2007.44.3.517
[9] Sadraoui, H., Hyponormality of Toeplitz operators and composition operators [Thesis] (1992), Purdue University
[10] Lu, Q. F.; Yu, T., Hyponormality of Toeplitz operators on the Dirichlet space, Journal of Mathematical Research and Exposition, 31, 6, 1057-1063 (2011) · Zbl 1260.47027
[11] Yu, T., Operators on the orthogonal complement of the Dirichlet space, Journal of Mathematical Analysis and Applications, 357, 1, 300-306 (2009) · Zbl 1180.47023 · doi:10.1016/j.jmaa.2009.04.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.