×

Quenched asymptotics for Brownian motion in generalized Gaussian potential. (English) Zbl 1294.60101

The authors summarize the content of this paper in the abstract as follows: We study the long-term asymptotics for the quenched moment consisting of a \(d\)-dimensional Brownian motion and a generalized Gaussian field \(V\). The major progress made in this paper includes: the solution to an open problem posted by R. A. Carmona and S. A. Molchanov [Probab. Theory Relat. Fields 102, No. 4, 433–453 (1995; Zbl 0827.60051)], the quenched laws for Brownian motions in Newtonian-type potentials and in the potentials driven by white noise or by fractional white noise.

MSC:

60J65 Brownian motion
60K37 Processes in random environments
60K40 Other physical applications of random processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60F10 Large deviations

Citations:

Zbl 0827.60051
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Amir, G., Corwin, I. and Quastel, J. (2011). Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Comm. Pure Appl. Math. 64 466-537. · Zbl 1222.82070
[2] Balázs, M., Quastel, J. and Seppäläinen, T. (2011). Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Amer. Math. Soc. 24 683-708. · Zbl 1227.60083
[3] Bass, R., Chen, X. and Rosen, J. (2009). Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 626-666. · Zbl 1181.60035
[4] Biskup, M. and König, W. (2001). Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 636-682. · Zbl 1018.60093
[5] Carmona, R. A. and Molchanov, S. A. (1995). Stationary parabolic Anderson model and intermittency. Probab. Theory Related Fields 102 433-453. · Zbl 0827.60051
[6] Carmona, R. A. and Viens, F. G. (1998). Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stochastics Stochastics Rep. 62 251-273. · Zbl 0908.60062
[7] Chen, X. (2010). Random Walk Intersections : Large Deviations and Related Topics. Mathematical Surveys and Monographs 157 . Amer. Math. Soc., Providence, RI.
[8] Chen, X. (2012). Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. Ann. Probab. 40 1436-1482. · Zbl 1259.60094
[9] Chen, X., Hu, Y. Z., Song, J. and Xing, F. (2014). Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat. · Zbl 1337.60201
[10] Chen, X., Li, W. V. and Rosen, J. (2005). Large deviations for local times of stable processes and stable random walks in 1 dimension. Electron. J. Probab. 10 577-608. · Zbl 1109.60016
[11] Chen, X. and Rosen, J. (2010). Large deviations and renormalization for Riesz potentials of stable intersection measures. Stochastic Process. Appl. 120 1837-1878. · Zbl 1226.60042
[12] Conus, D., Joseph, M., Khoshnevisan, D. and Shiu, S.-Y. (2013). On the chaotic character of the stochastic heat equation, II. Probab. Theory Related Fields 156 483-533. · Zbl 1286.60061
[13] Gärtner, J. and König, W. (2000). Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab. 10 192-217. · Zbl 1171.60359
[14] Gärtner, J., König, W. and Molchanov, S. A. (2000). Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 547-573. · Zbl 0972.60056
[15] Gärtner, J. and Molchanov, S. A. (1990). Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 613-655. · Zbl 0711.60055
[16] Gärtner, J. and Molchanov, S. A. (1998). Parabolic problems for the Anderson model. II. Second-order asymptotics and structure of high peaks. Probab. Theory Related Fields 111 17-55. · Zbl 0909.60040
[17] Guelfand, I. M. and Vilenkin, G. (1964). Generalized Functions . Academic Press, New York.
[18] Hairer, M. (2013). Solving the KPZ equation. Ann. Math. 178 559-664. · Zbl 1281.60060
[19] Hu, Y., Nualart, D. and Song, J. (2011). Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39 291-326. · Zbl 1210.60056
[20] Karda, M., Parisi, G. and Zhang, Y. C. (1986). Dynamic scaling of growing interface. Phys. Rev. Lett. 56 889-892. · Zbl 1101.82329
[21] Karda, M. and Zhang, Y. C. (1987). Scaling of directed polymers in random media. Phys. Rev. Lett. 58 2087-2090.
[22] Marcus, M. B. and Rosen, J. (2006). Markov Processes , Gaussian Processes , and Local Times. Cambridge Studies in Advanced Mathematics 100 . Cambridge Univ. Press, Cambridge. · Zbl 1129.60002
[23] Slepian, D. (1962). The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41 463-501.
[24] Sznitman, A.-S. (1998). Brownian Motion , Obstacles and Random Media . Springer, Berlin. · Zbl 0973.60003
[25] Viens, F. G. and Zhang, T. (2008). Almost sure exponential behavior of a directed polymer in a fractional Brownian environment. J. Funct. Anal. 255 2810-2860. · Zbl 1152.82028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.