×

On designing decentralized impulsive controllers for synchronization of complex dynamical networks with nonidentical nodes and coupling delays. (English) Zbl 1294.93006

Summary: This paper investigates the problem of designing decentralized impulsive controllers for synchronization of a class of Complex Dynamical Networks (CDNs) about some prescribed goal function. The CDNs are allowed to possess nonidentical nodes and coupling delays. Two cases of time-varying coupling delays are considered: the case where the coupling delays are uniformly bounded, and the case where the derivatives of the coupling delays are not greater than 1. The synchronization analysis for the first case is performed by applying a time-varying Lyapunov function based method combined with Razumikhin-type technique, while the synchronization analysis for the second case is conducted based on a time-varying Lyapunov functional based method. For each case, by utilizing a convex combination technique, the resulting synchronization criterion is formulated as the feasibility problem of a set of linear matrix inequalities (LMIs). Then, sufficient conditions on the existence of a decentralized impulsive controller are presented by employing these newly obtained synchronization criteria. The local impulse gain matrices can be designed by solving a set of LMIs. Finally, two representative examples are given to illustrate the correctness of the theoretical results.

MSC:

93A14 Decentralized systems
93A15 Large-scale systems
93D30 Lyapunov and storage functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Strogstz, S. H., Exploring complex networks, Nature, 410, 268-276, (2001) · Zbl 1370.90052
[2] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: structure and dynamics, Phys. Rep., 424, 175-308, (2006) · Zbl 1371.82002
[3] Liu, Y.; Slotine, J.; Barabasi, A., Controllability of complex networks, Nature, 473, 167-173, (2011)
[4] Wu, C.; Chua, L. O., Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. Circuits Syst. I, 42, 430-447, (1995) · Zbl 0867.93042
[5] Wang, X.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans. Circuits Syst. I, 49, 54-62, (2002) · Zbl 1368.93576
[6] Wang, X.; Chen, G., Synchronization in small-world dynamical networks, Int. J. Bifurc. Chaos, 12, 187-192, (2002)
[7] Wu, C., Synchronization in arrays of coupled nonlinear systems with delay and nonreciprocal time-varying coupling, IEEE Trans. Circuits Syst. II, 52, 282-286, (2005)
[8] Lü, J.; Chen, G., A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE Trans. Autom. Control, 50, 841-846, (2005) · Zbl 1365.93406
[9] Li, C. P.; Sun, W. G.; Kurths, J., Synchronization of complex dynamical networks with time delays, Physica A, 361, 24-34, (2006)
[10] Li, Z.; Chen, G., Global synchronization and asymptotic stability of complex dynamical networks, IEEE Trans. Circuits Syst.—II: Express Briefs, 53, 28-33, (2006)
[11] Yu, W.; Cao, J.; Lü, J., Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM J. Appl. Dyn. Syst., 7, 108-133, (2008) · Zbl 1161.94011
[12] Li, Z.; Chen, G., Robust adaptive synchronization of uncertain dynamical networks, Phys. Lett. A, 324, 166-178, (2004) · Zbl 1123.93316
[13] Zhou, J.; Lu, J.; Lü, J., Adaptive synchronization of an uncertain complex dynamical network, IEEE Trans. Autom. Control, 50, 841-846, (2005) · Zbl 1365.93406
[14] Zhang, Q.; Lu, J.; Lü, J.; Tse, C. K., Adaptive feedback synchronization of a general complex dynamical network with delayed nodes, IEEE Trans. Circuits Syst.-II: Express Briefs, 55, 183-187, (2008)
[15] Chen, T.; Liu, X.; Lu, W., Pinning complex networks by a single controller, IEEE Trans. Circuits Syst.-I Regul. Pap., 54, 1317-1326, (2007) · Zbl 1374.93297
[16] Yu, W.; Chen, G.; Lü, J., On pinning synchronization of complex dynamical networks, Automatica, 45, 429-435, (2009) · Zbl 1158.93308
[17] Hu, C.; Yu, J.; Jiang, H.; Teng, Z., Pinning synchronization of weighted complex networks with variable delays and adaptive coupling weights, Nonlinear Dyn., 67, 1373-1385, (2012) · Zbl 1242.93045
[18] Jiang, G. P.; Tang, W. K.S.; Chen, G., A state-observer-based approach for synchronization in complex dynamical networks, IEEE Trans. Circuits Syst.-I Regul. Pap., 53, 2739-2745, (2006) · Zbl 1374.37128
[19] Wu, J.; Jiao, L., Observer-based synchronization in complex dynamical networks with nonsymmetric coupling, Physica A, 386, 469-480, (2007)
[20] Chai, Y.; Lü, L.; Chen, L.-Q., Synchronization of spatiotemporal chaos in complex networks via backstepping, Chin. Phys. B, 21, 030506, (2012)
[21] Lü, L.; Li, Y.; Fan, X.; Lü, N., Outer synchronization between uncertain complex networks based on backstepping design, Nonlinear Dyn., 73, 767-773, (2013) · Zbl 1281.34091
[22] Wang, Y.-W.; Xiao, J.-W.; Wen, C.; Guan, Z.-H., Synchronization of continuous dynamical networks with discrete-time communications, IEEE Trans. Neural Netw., 22, 1979-1986, (2011)
[23] Wu, Z.; Park, J. H.; Su, H.; Song, B.; Chu, J., Exponential synchronization for complex dynamical networks with sampled-data, J. Frankl. Inst., 349, 2735-2749, (2012) · Zbl 1264.93013
[24] Wu, Z.-G.; Shi, P.; Su, H.; Chu, J., Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay, IEEE Trans. Neural Netw. Learn. Syst., 24, 1177-1187, (2013)
[25] Wen, G.; Duan, Z.; Yu, W.; Chen, G., Consensus of multi-agent systems with nonlinear dynamics and sampled-data information: a delayed-input approach, Int. J. Robust Nonlinear Control, 23, 602-619, (2013) · Zbl 1273.93012
[26] Liu, B.; Liu, X.; Chen, G.; Wang, H., Robust impulsive synchronization of uncertain dynamical networks, IEEE Trans. Circuits Syst. I, 52, 1431-1441, (2004) · Zbl 1374.82016
[27] Guan, Z. H.; Liu, Z.-W.; Feng, G.; Wang, Y.-W., Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Trans. Circuits Syst.-I Regul. Pap., 57, 2182-2195, (2010)
[28] Zhou, J.; Wu, Q. J.; Xiang, L.; Cai, S. M.; Liu, Z. R., Impulsive synchronization seeking in general complex delayed dynamical networks, Nonlinear Anal.: Hybrid Syst., 5, 513-524, (2011) · Zbl 1238.93050
[29] Zhou, J.; Wu, Q.; Xiang, L., Pinning complex delayed dynamical networks by a single impulsive controller, IEEE Trans. Circuits Systems—I Reg. Pap., 58, 2882-2893, (2011)
[30] Wang, J.-L.; Wu, H.-N., Synchronization criteria for impulsive complex dynamical networks with time-varying delay, Nonlinear Dyn., 70, 13-24, (2012) · Zbl 1267.93079
[31] Liu, B.; Hill, D. J., Impulsive consensus for complex dynamical networks with nonidentical nodes and coupling delays, SIAM J. Control Optim., 49, 315-338, (2011) · Zbl 1217.93078
[32] Wang, Z.; Duan, Z.; Cao, J., Impulsive synchronization of coupled dynamical networks with nonidentical Duffing oscillators and coupling delays, Chaos, 22, 013140, (2012) · Zbl 1331.34062
[33] Wen, G.; Duan, Z.; Yu, W.; Chen, G., Consensus in multi-agent systems with communication constraints, Int. J. Robust Nonlinear Control, 22, 170-182, (2013) · Zbl 1244.93018
[34] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA · Zbl 0816.93004
[35] de Souza, C. E.; Li, X., Delay-dependent robust \(H_\infty\) control of uncertain linear state-delayed systems, Automatica, 35, 1313-1321, (1999) · Zbl 1041.93515
[36] W.-H. Chen, W.X. Zheng, Robust stabilization of delayed Markovian jump systems subject to parametric uncertainties, in: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, December 2007, pp. 3054-3059.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.