×

zbMATH — the first resource for mathematics

On maximal chains in the non-crossing partition lattice. (English) Zbl 1295.05266
Summary: A weak order on the set of maximal chains of the non-crossing partition lattice is introduced and studied. A 0-Hecke algebra action is used to compute the radius of the graph on these chains in which two chains are adjacent if they differ in exactly one element.

MSC:
05E15 Combinatorial aspects of groups and algebras (MSC2010)
20C08 Hecke algebras and their representations
20F55 Reflection and Coxeter groups (group-theoretic aspects)
Software:
OEIS
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Armstrong, D., Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc., 202, 949, (2009) · Zbl 1191.05095
[2] Athanasiadis, C. A.; Roichman, Y., The absolute order of a permutation representation of a Coxeter group, J. Algebraic Combin., 39, 75-98, (2014) · Zbl 1294.05166
[3] Autord, M.; Dehornoy, P., On the distance between the expressions of a permutation, European J. Combin., 31, 1829-1846, (2010) · Zbl 1227.05013
[4] Bessis, D., The dual braid monoid, Ann. Sci. École Norm. Sup. (4), 36, 647-683, (2003) · Zbl 1064.20039
[5] Björner, A.; Brenti, F., Combinatorics of Coxeter groups, Grad. Texts in Math., vol. 231, (2005), Springer New York · Zbl 1110.05001
[6] Butler, L. M.; Flanigan, W. P., A note on log-convexity of q-Catalan numbers, Ann. Comb., 11, 369-373, (2007) · Zbl 1147.05011
[7] Carlitz, L.; Riordan, J., Two element lattice permutations and their q-generalization, Duke Math. J., 31, 371-388, (1964) · Zbl 0126.26301
[8] Dénes, J., The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci., 4, 63-71, (1959) · Zbl 0092.01104
[9] Dehornoy, F.; Paris, L., Gaussian groups and garside groups, two generalisations of Artin groups, Proc. Lond. Math. Soc. (3), 79, 569-604, (1999) · Zbl 1030.20021
[10] Fürlinger, J.; Hofbauer, J., q-Catalan numbers, J. Combin. Theory Ser. A, 40, 248-264, (1985) · Zbl 0581.05006
[11] Garside, F. A., The braid group and other groups, Quart. J. Math. Oxford Ser. (2), 20, 235-254, (1969) · Zbl 0194.03303
[12] Gelfand, I. M.; Graev, M. I.; Postnikov, A., Combinatorics of hypergeometric functions associated with positive roots, (Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, (1997), Birkhäuser), 205-221 · Zbl 0876.33011
[13] Gewurz, D. A.; Merola, F., Some factorisations counted by Catalan numbers, European J. Combin., 27, 990-994, (2006) · Zbl 1089.05003
[14] Goulden, I.; Yong, A., Tree-like properties of cycle factorizations, J. Combin. Theory Ser. A, 98, 106-117, (2002) · Zbl 0992.05002
[15] Hernando, C.; Hurtado, F.; Márquez, A.; Mora, M.; Noy, M., Geometric tree graphs of points in convex position, Discrete Appl. Math., 93, 51-66, (1999) · Zbl 0930.05032
[16] Hurwitz, A., Ueber Riemann’sche flächen mit gegebenen verzweigungspunkten, Math. Ann., 39, 1-61, (1891) · JFM 23.0429.01
[17] Kreweras, G., Sur LES partitions non croisées d’un cycle, Discrete Math., 1, 333-350, (1972) · Zbl 0231.05014
[18] McNamara, P., EL-labelings, supersolvability and 0-Hecke algebra actions on posets, J. Combin. Theory Ser. A, 101, 69-89, (2003) · Zbl 1020.06004
[19] Rains, E. M.; Vazirani, M. J., Deformations of permutation representations of Coxeter groups, J. Algebraic Combin., 37, 455-502, (2013) · Zbl 1277.20042
[20] Reiner, V.; Roichman, Y., Diameter of reduced words, Trans. Amer. Math. Soc., 365, 2779-2802, (2013) · Zbl 1333.20042
[21] Sagan, B.; Savage, C., Mahonian pairs, J. Combin. Theory Ser. A, 119, 526-545, (2012) · Zbl 1242.05019
[22] N.J.A. Sloane, The on-line encyclopedia of integer sequences. · Zbl 1044.11108
[23] Strehl, V., Minimal transitive products of transpositions - the reconstruction of a proof of A. Hurwitz, Sém. Lothar. Combin., 37, (1996), Art. S37c, 12 pp. (electronic) · Zbl 0886.05006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.