×

Extending topological abelian groups by the unit circle. (English) Zbl 1295.22009

A twisted sum in the category of topological abelian groups is a short sequence \(0\to Y\to X\to Z\to 0\) where all maps are assumed to be continuous and open onto their images. The twisted sum is said to split if it is equivalent to \(0\to Y\to Y\times Z\to Z\to 0\). In the paper under review, the authors study the class \(S_{TG}(\mathbb{T})\) of topological abelian groups \(G\) for which every twisted sum \(0\to \mathbb{T}\to X\to G\to 0\) splits, where \(\mathbb{T}\) denotes the unit circle of the complex plane \(\mathbb{C}\). In the first part of the paper, the authors prove the following:
(1)
The class \(S_{TG}(\mathbb{T})\) is closed under forming open and dense subgroups (Corollaries 14 and 15), quotient by dually embedded subgroups (Theorem 21), and coproducts (Proposition 24).
(2)
The class \(S_{TG}(\mathbb{T})\) contains locally precompact Hausdorff abelian groups (Theorem 18).
Further, the authors show that the direct limit of a countable direct system of nuclear abelian groups in \(S_{TG}(\mathbb{T})\) is in \(S_{TG}(\mathbb{T})\) (Theorem 25). In particular, since every locally compact abelian group is nuclear, a sequential direct limit of locally compact abelian groups is in \(S_{TG}(\mathbb{T})\).
A topological group is called an \(\mathcal{L}_\infty\) group if its topology is the intersection of a decreasing sequence of Hausdorff locally compact group topologies. By combining the above results with a structure theorem of \(\mathcal{L}_\infty\) groups, which asserts that every abelian \(\mathcal{L}_\infty\) group has an open subgroup which is a strict inductive limit of a sequence of Hausdorff locally compact abelian groups [L. J. Sulley, J. Lond. Math. Soc., II. Ser. 5, 629–637 (1972; Zbl 0243.22002)], the authors prove (Corollary 27): every abelian \(\mathcal{L}_\infty\) group is in \(S_{TG}(\mathbb{T})\). At the end of the paper, the authors use the notion of approximable quasi-homomorphisms to obtain new examples of groups in the class \(S_{TG}(\mathbb{T})\).

MSC:

22B05 General properties and structure of LCA groups
22A05 Structure of general topological groups

Citations:

Zbl 0243.22002

References:

[1] Kalton, N. J.; Peck, N. T.; Roberts, J. W., An F-Space Sampler. An F-Space Sampler, London Mathematical Society Lecture Note Series (1984), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0556.46002
[2] Bruguera, M.; Tkachenko, M., The three space problem in topological groups, Topology and Its Applications, 153, 13, 2278-2302 (2006) · Zbl 1102.54039 · doi:10.1016/j.topol.2005.05.009
[3] Castillo, J. M. F., On the “three-space” problem for locally quasi-convex topological groups, Archiv der Mathematik, 74, 4, 253-262 (2000) · Zbl 0955.22006 · doi:10.1007/s000130050439
[4] Kalton, N. J.; Peck, N. T., Quotients of \(L_p \left(0,1\right)\) for \(0 \leq p < 1\), Studia Mathematica, 64, 1, 65-75 (1979) · Zbl 0393.46007
[5] Cabello, F., Pseudo-characters and almost multiplicative functionals, Journal of Mathematical Analysis and Applications, 248, 1, 275-289 (2000) · Zbl 0958.43001 · doi:10.1006/jmaa.2000.6898
[6] Cabello, F., Quasi-additive mappings, Journal of Mathematical Analysis and Applications, 290, 1, 263-270 (2004) · Zbl 1059.46003 · doi:10.1016/j.jmaa.2003.09.077
[7] Cabello Sánchez, F., Quasi-homomorphisms, Fundamenta Mathematicae, 178, 3, 255-270 (2003) · Zbl 1051.39032 · doi:10.4064/fm178-3-5
[8] Banaszczyk, W., Additive Subgroups of Topological Vector Spaces. Additive Subgroups of Topological Vector Spaces, Lecture Notes in Mathematics, 1466 (1991), Berlin, Germany: Springer, Berlin, Germany · Zbl 0743.46002
[9] Morris, S. A., Pontryagin Duality and the Structure of Locally Compact Abelian Groups (1977), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0446.22006
[10] Bruguera, M.; Martín-Peinador, E., Open subgroups, compact subgroups and Binz-Butzmann reflexivity, Topology and Its Applications, 72, 2, 101-111 (1996) · Zbl 0892.43003 · doi:10.1016/0166-8641(96)00015-6
[11] Domański, P., On the splitting of twisted sums, and the three-space problem for local convexity, Studia Mathematica, 82, 2, 155-189 (1985) · Zbl 0582.46004
[12] Ribe, M., Examples for the nonlocally convex three space problem, Proceedings of the American Mathematical Society, 73, 3, 351-355 (1979) · Zbl 0397.46002 · doi:10.2307/2042361
[13] Roberts, J. W., A nonlocally convex \(F\)-space with the Hahn-Banach approximation property, Banach Spaces of Analytic Functions. Banach Spaces of Analytic Functions, Lecture Notes, 604, 76-81 (1977), Berlin, Germany: Springer, Berlin, Germany · Zbl 0369.46009
[14] Warner, S., Topological Fields. Topological Fields, Mathematics Studies, 157 (1989), Amsterdam, The Netherlands: North-Holland, Amsterdam, The Netherlands · Zbl 0683.12014
[15] Hewitt, E.; Ross, K. A., Abstract Harmonic Analysis I (1979), Berlin, Germany: Springer, Berlin, Germany · Zbl 0416.43001
[16] Comfort, W. W.; Ross, K. A., Topologies induced by groups of characters, Fundamenta Mathematicae, 55, 283-291 (1964) · Zbl 0138.02905
[17] Ardanza-Trevijano, S.; Chasco, M. J., The Pontryagin duality of sequential limits of topological abelian groups, Journal of Pure and Applied Algebra, 202, 1-3, 11-21 (2005) · Zbl 1090.22001 · doi:10.1016/j.jpaa.2005.02.006
[18] Varopoulos, N. Th., Studies in harmonic analysis, Proceedings of the Cambridge Philosophical Society, 60, 465-516 (1964) · Zbl 0161.11103
[19] Galindo, J.; Hernández, S., The concept of boundedness and the Bohr compactification of a MAP abelian group, Fundamenta Mathematicae, 159, 3, 195-218 (1999) · Zbl 0934.22008
[20] Reade, J. B., A theorem on cardinal numbers associated with inductive limits of locally compact Abelian groups, Proceedings of the Cambridge Philosophical Society, 61, 69-74 (1965) · Zbl 0136.29604
[21] Hernández, S., A theorem on cardinal numbers associated with \(\mathcal{L}_\infty\) abelian groups, Mathematical Proceedings of the Cambridge Philosophical Society, 134, 1, 33-39 (2003) · Zbl 1037.22001 · doi:10.1017/S0305004102006242
[22] Sulley, L. J., On countable inductive limits of locally compact abelian groups, Journal of the London Mathematical Society, 5, 2, 629-637 (1972) · Zbl 0243.22002
[23] Venkataraman, R., Characterization, structure and analysis on abelian \(\mathcal{L}_\infty\) groups, Monatshefte für Mathematik, 100, 1, 47-66 (1985) · Zbl 0563.43005 · doi:10.1007/BF01383716
[24] Chasco, M. J.; Domínguez, X., Topologies on the direct sum of topological abelian groups, Topology and Its Applications, 133, 3, 209-223 (2003) · Zbl 1029.22002 · doi:10.1016/S0166-8641(03)00089-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.