Mappings for special functions on Cantor sets and special integral transforms via local fractional operators. (English) Zbl 1295.26008

Summary: The mappings for some special functions on Cantor sets are investigated. Meanwhile, we apply the local fractional Fourier series, Fourier transforms, and Laplace transforms to solve three local fractional differential equations, and the corresponding nondifferentiable solutions were presented.


26A33 Fractional derivatives and integrals
Full Text: DOI


[1] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0920.33001
[2] Elbert, Á.; Laforgia, A., On some properties of the gamma function, Proceedings of the American Mathematical Society, 128, 9, 2667-2673 (2000) · Zbl 0949.33001
[3] Virchenko, N.; Kalla, S. L.; Al-Zamel, A., Some results on a generalized hypergeometric function, Integral Transforms and Special Functions, 12, 1, 89-100 (2001) · Zbl 1026.33006
[4] Choi, J.; Agarwal, P., Certain unified integrals associated with Bessel functions, Boundary Value Problems, 2013, 1, 1-9 (2013) · Zbl 1293.33003
[5] McNamara, P. J., Metaplectic Whittaker functions and crystal bases, Duke Mathematical Journal, 156, 1, 1-31 (2011) · Zbl 1217.22015
[6] Barnes, E. W., The theory of the G-function, Quarterly Journal of Mathematics, 31, 264-314 (1899) · JFM 30.0389.02
[7] Floreanini, R.; Vinet, L., \(U_q(\operatorname{ sl }(2))\) and \(q\)-special functions, Contemporary Mathematics, 160, 85 (1994) · Zbl 0807.33013
[8] Srivastava, H. M.; Gupta, K. C.; Goyal, S. P., The H-Functions of One and Two Variables with Applications (1982), New Delhi, India: South Asian Publishers, New Delhi, India · Zbl 0506.33007
[9] Gorenflo, R.; Kilbas, A. A.; Rogosin, S. V., On the generalized Mittag-Leffler type functions, Integral Transforms and Special Functions, 7, 3-4, 215-224 (1998) · Zbl 0935.33012
[10] Saxena, R. K.; Saigo, M., Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function, Fractional Calculus & Applied Analysis, 8, 2, 141-154 (2005) · Zbl 1144.26010
[11] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus Models and Numerical Methods. Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (2012), Singapore: World Scientific, Singapore · Zbl 1248.26011
[12] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 204 (2006), Amsterdam, The Netherlands: Elsevier, Amsterdam, The Netherlands · Zbl 1092.45003
[13] Sabatier, J.; Agrawal, O. P.; Machado, J. A. T., Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering (2007), New York, NY, USA: Springer, New York, NY, USA · Zbl 1116.00014
[14] Hu, S.; Chen, Y. Q.; Qiu, T. S., Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (2012), New York, NY, USA: Springer, New York, NY, USA · Zbl 1245.94004
[15] Mainardi, F.; Gorenflo, R., On Mittag-Leffler-type functions in fractional evolution processes, Journal of Computational and Applied Mathematics, 118, 1-2, 283-299 (2000) · Zbl 0970.45005
[16] Saxena, R. K.; Mathai, A. M.; Haubold, H. J., Fractional reaction-diffusion equations, Astrophysics and Space Science, 305, 3, 289-296 (2006) · Zbl 1105.35307
[17] Li, Y.; Chen, Y.; Podlubny, I., Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45, 8, 1965-1969 (2009) · Zbl 1185.93062
[18] de Oliveira, E. C.; Mainardi, F.; Vaz, J., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, The European Physical Journal Special Topics, 193, 1, 161-171 (2011)
[19] Crothers, D. S. F.; Holland, D.; Kalmykov, Y. P.; Coffey, W. T., The role of Mittag-Leffler functions in anomalous relaxation, Journal of Molecular Liquids, 114, 1-3, 27-34 (2004)
[20] Scalas, E.; Gorenflo, R.; Mainardi, F., Fractional calculus and continuous-time finance, Physica A, 284, 1-4, 376-384 (2000)
[21] Achar, B. N. N.; Hanneken, J. W., Fractional radial diffusion in a cylinder, Journal of Molecular Liquids, 114, 1-3, 147-151 (2004)
[22] Sadati, S. J.; Baleanu, D.; Ranjbar, A.; Ghaderi, R.; Abdeljawad, T., Mittag-Leffler stability theorem for fractional nonlinear systems with delay, Abstract and Applied Analysis, 2010 (2010) · Zbl 1195.34013
[23] Welch, S. W. J.; Rorrer, R. A. L.; Duren, R. G., Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials, Mechanics Time-Dependent Materials, 3, 3, 279-303 (1999)
[24] Yang, X. J., Local Fractional Functional Analysis and Its Applications (2011), Hong Kong, China: Asian Academic Publisher, Hong Kong, China
[25] Yang, X. J., Advanced Local Fractional Calculus and Its Applications (2012), New York, NY, USA: World Science, New York, NY, USA
[26] Hu, M.-S.; Agarwal, R. P.; Yang, X.-J., Local fractional Fourier series with application to wave equation in fractal vibrating string, Abstract and Applied Analysis, 2012 (2012) · Zbl 1257.35193
[27] Zhang, Y.; Yang, A.; Yang, X.-J., 1-D heat conduction in a fractal medium: a solution by the local fractional Fourier series method, Thermal Science, 17, 3, 953-956 (2013)
[28] Yang, Y.-J.; Baleanu, D.; Yang, X.-J., Analysis of fractal wave equations by local fractional Fourier series method, Advances in Mathematical Physics, 2013 (2013) · Zbl 1291.35123
[29] Yang, X. J.; Baleanu, D.; Machado, J. A. T., Mathematical aspects of Heisenberg uncertainty principle within local fractional Fourier analysis, Boundary Value Problems, 2013, 1, 131-146 (2013) · Zbl 1296.35154
[30] Yang, A. M.; Zhang, Y. Z.; Long, Y., The Yang-Fourier transforms to heat-conduction in a semi-infinite fractal bar, Thermal Science, 17, 3, 707-7713 (2013)
[31] Gao, F.; Zhong, W. P.; Shen, X. M., Applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral, Advanced Materials Research, 461, 306-310 (2012)
[32] He, J.-H., Asymptotic methods for solitary solutions and compactons, Abstract and Applied Analysis, 2012 (2012) · Zbl 1257.35158
[33] Liu, C. F.; Kong, S. S.; Yuan, S. J., Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem, Thermal Science, 17, 3, 715-721 (2013)
[34] Chen, G. S., Generalizations of hölder’s and some related integral inequalities on fractal space, Journal of Function Spaces and Applications, 2013 (2013) · Zbl 1275.26014
[35] Carpinteri, A.; Chiaia, B.; Cornetti, P., The elastic problem for fractal media: basic theory and finite element formulation, Computers and Structures, 82, 6, 499-508 (2004)
[36] Golmankhaneh, A. K.; Fazlollahi, V.; Baleanu, D., Newtonian mechanics on fractals subset of real-line, Romania Reports in Physics, 65, 84-93 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.