×

Global robust exponential dissipativity for interval recurrent neural networks with infinity distributed delays. (English) Zbl 1295.34075

Summary: This paper is concerned with the robust dissipativity problem for interval recurrent neural networks (IRNNs) with general activation functions, and continuous time-varying delay, and infinity distributed time delay. By employing a new differential inequality, constructing two different kinds of Lyapunov functions, and abandoning the limitation on activation functions being bounded, monotonous and differentiable, several sufficient conditions are established to guarantee the global robust exponential dissipativity for the addressed IRNNs in terms of linear matrix inequalities (LMIs) which can be easily checked by LMI Control Toolbox in MATLAB. Furthermore, the specific estimation of positive invariant and global exponential attractive sets of the addressed system is also derived. Compared with the previous literatures, the results obtained in this paper are shown to improve and extend the earlier global dissipativity conclusions. Finally, two numerical examples are provided to demonstrate the potential effectiveness of the proposed results.

MSC:

34K25 Asymptotic theory of functional-differential equations
34K38 Functional-differential inequalities
92B20 Neural networks for/in biological studies, artificial life and related topics

Software:

Matlab; LMI toolbox

References:

[1] Liao, X.; Fu, Y.; Xie, S., Globally exponential stability of Hopfied networks, Advances in Systems Science and Applications, 5, 533-545 (2005)
[2] Fu, X.; Li, X., LMI conditions for stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays, Communications in Nonlinear Science and Numerical Simulation, 16, 1, 435-454 (2011) · Zbl 1221.34195 · doi:10.1016/j.cnsns.2010.03.003
[3] Zhu, Q.; Li, X.; Yang, X., Exponential stability for stochastic reaction-diffusion BAM neural networks with time-varying and distributed delays, Applied Mathematics and Computation, 217, 13, 6078-6091 (2011) · Zbl 1210.35308 · doi:10.1016/j.amc.2010.12.077
[4] Li, X.; Rakkiyappan, R.; Balasubramaniam, P., Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations, Journal of the Franklin Institute, 348, 2, 135-155 (2011) · Zbl 1241.92006 · doi:10.1016/j.jfranklin.2010.10.009
[5] Li, D.; Wang, X.; Xu, D., Existence and global p-exponential stability of periodic solution for impulsive stochastic neural networks with delays, Nonlinear Analysis: Hybrid Systems, 6, 3, 847-858 (2012) · Zbl 1244.93169 · doi:10.1016/j.nahs.2011.11.002
[6] Balasubramaniam, P.; Lakshmanan, S., LMI conditions for robust stability analysis of stochastic hopfield neural networks with interval time-varying delays and linear fractional uncertainties, Circuits, Systems, and Signal Processing, 30, 5, 1011-1028 (2011) · Zbl 1228.93127 · doi:10.1007/s00034-010-9260-y
[7] Li, X., Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type, Applied Mathematics and Computation, 215, 12, 4370-4384 (2010) · Zbl 1196.34107 · doi:10.1016/j.amc.2009.12.068
[8] Han, W.; Kao, Y.; Wang, L., Global exponential robust stability of static interval neural networks with S-type distributed delays, Journal of the Franklin Institute, 348, 8, 2072-2081 (2011) · Zbl 1242.34144 · doi:10.1016/j.jfranklin.2011.05.023
[9] Bao, G.; Wen, S.; Zeng, Z., Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type, Neural Networks, 33, 32-41 (2012) · Zbl 1267.34137 · doi:10.1016/j.neunet.2012.04.003
[10] Faydasicok, O.; Arik, S., Robust stability analysis of a class of neural networks with discrete time delays, Neural Networks, 29-30, 52-59 (2012) · Zbl 1245.93111 · doi:10.1016/j.neunet.2012.02.001
[11] Balasubramaniam, P.; Lakshmanan, S.; Manivannan, A., Robust stability analysis for Markovian jumping interval neural networks with discrete and distributed time-varying delays, Chaos, Solitons and Fractals, 45, 4, 483-495 (2012) · Zbl 1268.93116 · doi:10.1016/j.chaos.2012.01.011
[12] Xu, X.; Zhang, J.; Zhang, W., Stochastic exponential robust stability of interval neural networks with reaction-diffusion terms and mixed delays, Communications in Nonlinear Science and Numerical Simulation, 17, 12, 4780-4791 (2012) · Zbl 1302.92018 · doi:10.1016/j.cnsns.2012.04.007
[13] Liu, G.; Yang, S.; Chai, Y.; Feng, W.; Fu, W., Robust stability criteria for uncertain stochastic neural networks of neutral-type with interval time-varying delays, Neural Computing and Applications, 22, 2, 349-359 (2013) · doi:10.1007/s00521-011-0696-1
[14] Li, D.; He, D.; Xu, D., Mean square exponential stability of impulsive stochastic reaction-diffusion Cohen-Grossberg neural networks with delays, Mathematics and Computers in Simulation, 82, 8, 1531-1543 (2012) · Zbl 1246.35214 · doi:10.1016/j.matcom.2011.11.007
[15] Long, S.; Song, Q.; Wang, X.; Li, D., Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations, Journal of the Franklin Institute, 349, 7, 2461-2479 (2012) · Zbl 1287.93049
[16] Li, H.; Chen, B.; Lin, C.; Zhou, Q., Mean square exponential stability of stochastic fuzzy Hopfield neural networks with discrete and distributed time-varying delays, Neurocomputing, 72, 7-9, 2017-2023 (2009) · doi:10.1016/j.neucom.2008.12.006
[17] Wen, S.; Zeng, Z.; Huang, T., Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays, Neurocompting, 97, 233-240 (2012)
[18] Liao, X.; Wang, J., Global dissipativity of continuous-time recurrent neural networks with time delay, Physical Review E, 68, 1 (2003)
[19] Liao, X.; Luo, Q.; Zeng, Z., Positive invariant and global exponential attractive sets of neural networks with time-varying delays, Neurocomputing, 71, 4-6, 513-518 (2008) · doi:10.1016/j.neucom.2007.07.017
[20] He, D.; Xu, D., Attracting and invariant sets of fuzzy Cohen-Grossberg neural networks with time-varying delays, Physics Letters A, 372, 47, 7057-7062 (2008) · Zbl 1227.92001 · doi:10.1016/j.physleta.2008.10.035
[21] Huang, Y.; Zhu, W.; Xu, D., Invariant and attracting set of fuzzy cellular neural networks with variable delays, Applied Mathematics Letters, 22, 4, 478-483 (2009) · Zbl 1225.34085 · doi:10.1016/j.aml.2008.06.019
[22] Yang, Z. G.; Yang, Z. C., Dissipativity in mean square of non-autonomous impulsive stochastic neural networks with delays, Proceedings of the 7th International Symposium on Neural Networks (ISNN ’10) · doi:10.1007/978-3-642-13278-0_93
[23] Lou, X. Y.; Cui, B. T., Global robust dissipativity for integro-differential systems modeling neural networks with delays, Chaos, Solitons and Fractals, 36, 2, 469-478 (2008) · Zbl 1141.93392 · doi:10.1016/j.chaos.2006.06.048
[24] Luo, M.; Zhong, S., Global dissipativity of uncertain discrete-time stochastic neural networks with time-varying delays, Neurocomputing, 85, 20-28 (2012) · doi:10.1016/j.neucom.2011.12.029
[25] Song, Q.; Cao, J., Global dissipativity on uncertain discrete-time neural networks with time-varying delays, Discrete Dynamics in Nature and Society, 2010 (2010) · Zbl 1188.39009 · doi:10.1155/2010/810408
[26] Song, Q.; Cao, J., Global dissipativity analysis on uncertain neural networks with mixed time-varying delays, Chaos, 18, 4 (2008) · Zbl 1309.92017 · doi:10.1063/1.3041151
[27] Wang, G.; Cao, J.; Wang, L., Global dissipativity of stochastic neural networks with time delay, Journal of the Franklin Institute, 346, 8, 794-807 (2009) · Zbl 1298.93309 · doi:10.1016/j.jfranklin.2009.04.003
[28] Cui, B.; Lou, X., Global robust dissipativity of integro-differential systems modelling neural networks with time delay, Electronic Journal of Differential Equations, 2007, 89, 1-12 (2007) · Zbl 1135.45003
[29] Feng, Z.; Lam, J., Stability and dissipativity analysis of distributed delay cellular neural networks, IEEE Transactions on Neural Networks, 22, 6, 976-981 (2011) · doi:10.1109/TNN.2011.2128341
[30] Wu, Z.; Lam, J.; Su, H.; Chu, J., Stability and dissipativity analysis of static neural networks with time delay, IEEE Transactions on Neural Networks and Learning Systems, 23, 2, 199-210 (2012)
[31] Liao, X.; Luo, Q.; Zeng, Z.; Guo, Y., Global exponential stability in Lagrange sense for recurrent neural networks with time delays, Nonlinear Analysis: Real World Applications, 9, 4, 1535-1557 (2008) · Zbl 1154.34384 · doi:10.1016/j.nonrwa.2007.03.018
[32] Luo, Q.; Zeng, Z.; Liao, X., Global exponential stability in Lagrange sense for neutral type recurrent neural networks, Neurocomputing, 74, 4, 638-645 (2011) · doi:10.1016/j.neucom.2010.10.001
[33] Wu, A.; Zeng, Z.; Fu, C.; Shen, W., Global exponential stability in Lagrange sense for periodic neural networks with various activation functions, Neurocomputing, 74, 5, 831-837 (2011) · doi:10.1016/j.neucom.2010.11.016
[34] Wang, X.; Jiang, M.; Fang, S., Stability analysis in Lagrange sense for a non-autonomous Cohen-Grossberg neural network with mixed delays, Nonlinear Analysis, Theory, Methods and Applications, 70, 12, 4294-4306 (2009) · Zbl 1162.34338 · doi:10.1016/j.na.2008.09.019
[35] Wang, B.; Jian, J.; Jiang, M., Stability in Lagrange sense for Cohen-Grossberg neural networks with time-varying delays and finite distributed delays, Nonlinear Analysis: Hybrid Systems, 4, 1, 65-78 (2010) · Zbl 1189.34149 · doi:10.1016/j.nahs.2009.07.007
[36] Tu, Z.; Jian, J.; Wang, K., Global exponential stability in Lagrange sense for recurrent neural networks with both time-varying delays and general activation functions via LMI approach, Nonlinear Analysis: Real World Applications, 12, 4, 2174-2182 (2011) · Zbl 1238.34141 · doi:10.1016/j.nonrwa.2010.12.031
[37] Wang, L.; Cao, J., Global robust point dissipativity of interval neural networks with mixed time-varying delays, Nonlinear Dynamics, 55, 1-2, 169-178 (2009) · Zbl 1169.92005 · doi:10.1007/s11071-008-9352-4
[38] Muralisankar, S.; Gopalakrishnan, N.; Balasubramaniam, P., An LMI approach for global robust dissipativity analysis of T-S fuzzy neural networks with interval time-varying delays, Expert Systems with Applications, 39, 3, 3345-3355 (2012) · doi:10.1016/j.eswa.2011.09.021
[39] Balasubramaniam, P.; Nagamani, G.; Rakkiyappan, R., Global passivity analysis of interval neural networks with discrete and distributed delays of neutral type, Neural Processing Letters, 32, 2, 109-130 (2010) · doi:10.1007/s11063-010-9147-8
[40] Li, X.; Shen, J., LMI approach for stationary oscillation of interval neural networks with discrete and distributed time-varying delays under impulsive perturbations, IEEE Transactions on Neural Networks, 21, 10, 1555-1563 (2010) · doi:10.1109/TNN.2010.2061865
[41] Li, H.; Gao, H.; Shi, P., New passivity analysis for neural networks with discrete and distributed delays, IEEE Transactions on Neural Networks, 21, 11, 1842-1847 (2010) · doi:10.1109/TNN.2010.2059039
[42] Balasubramaniam, P.; Nagamani, G., Global robust passivity analysis for stochastic fuzzy interval neural networks with time-varying delays, Expert Systems with Applications, 39, 1, 732-742 (2012) · doi:10.1016/j.eswa.2011.07.066
[43] Balasubramaniam, P.; Nagamani, G., A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay, Neurocomputing, 74, 10, 1646-1653 (2011) · doi:10.1016/j.neucom.2011.01.011
[44] Wen, S.; Zeng, Z.; Huang, T.; Bao, G., Robust passivity and passification for a class of singularly perturbed nonlinear systems with time-varying delays and polytopic uncertainties via neural networks, Circuits, Systems, and Signal Processing, 23, 3, 1113-1127 (2013) · doi:10.1007/s00034-012-9509-8
[45] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M., LMI Control Toolbox User’s Guide (1995), Natick, Mass, USA: Mathworks, Natick, Mass, USA
[46] Zhang, D.; Yu, L., Exponential state estimation for Markovian jumping neural networks with time-varying discrete and distributed delays, Neural Networks, 35, 103-111 (2012) · Zbl 1382.93031 · doi:10.1016/j.neunet.2012.08.005
[47] Halanay, A., Differential Equations: Stability, Oscillations, Time Lags (1966), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0144.08701
[48] Wen, S.; Zeng, Z.; Huang, T., Dynamic behaviors of memristor-based delayed recurrent networks, Neural Computing and Applications (2012) · doi:10.1007/s00521-012-0998-y
[49] Wen, S.; Zeng, Z., Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli, Neural Processing Letters, 35, 1, 47-59 (2012) · doi:10.1007/s11063-011-9203-z
[50] Chen, L.; Chai, Y.; Wu, R., Covergence of stochastic fuzzy Cohen-Grossberg neural networks with reaction-diffusion and distributed delays, Expert Systems with Applications, 39, 5, 5767-5773 (2012) · doi:10.1016/j.eswa.2011.11.092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.