Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. (English) Zbl 1295.35123

Summary: In this note we show finite-time blowup of radially symmetric solutions to the quasilinear parabolic-parabolic two-dimensional Keller-Segel system for any positive mass. We prove this result by slightly adapting M. Winkler’s method, which he introduced in [M. Winkler, J. Math. Pures Appl. (9) 100, No. 5, 748–767 (2013; Zbl 1326.35053)] for the semilinear Keller-Segel system in dimensions at least three, to the two-dimensional setting. This is done in the case of nonlinear diffusion and also in the case of nonlinear cross-diffusion provided the nonlinear chemosensitivity term is assumed not to decay. Moreover, it is shown that the above-mentioned non-decay assumption is essential with respect to keeping the finite-time blowup result. Namely, we prove that without the non-decay assumption solutions exist globally in time, however infinite-time blowup may occur.


35B44 Blow-up in context of PDEs
92C17 Cell movement (chemotaxis, etc.)
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35B07 Axially symmetric solutions to PDEs


Zbl 1326.35053
Full Text: DOI arXiv


[1] Amann, H.: Dynamic theory of quasilinear parabolic systems, III: global existence. Math. Z. 202, 219-250 (1989) · Zbl 0702.35125 · doi:10.1007/BF01215256
[2] Biler, P.: Existence and nonexistence of solutions for a model of gravitational interaction of particles III. Colloq. Math. 68, 229-239 (1995) · Zbl 0836.35076
[3] Biler, P.: Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715-743 (1998) · Zbl 0913.35021
[4] Biler, P., Karch, G., Laurençot, Ph., Nadzieja, T.: The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc. Topol. Methods Nonlinear Anal. 27, 133-147 (2006) · Zbl 1135.35367
[5] Biler, P., Karch, G., Laurençot, Ph., Nadzieja, T.: The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29, 1563-1583 (2006) · Zbl 1105.35131 · doi:10.1002/mma.743
[6] Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Patlak-Keller-Segel model in \(\mathbb{R}^2\). Commun. Pure Appl. Math. 61, 1449-1481 (2008) · Zbl 1155.35100 · doi:10.1002/cpa.20225
[7] Cieślak, T.: The solutions of the quasilinear Keller-Segel system with the volume filling effect do not blow up whenever the Lyapunov functional is bounded from below. Banach Cent. Publ. 74, 127-132 (2006); Self-Similar Solutions of Nonlinear PDE, ed.: P. Biler, G. Karch · Zbl 1103.92007 · doi:10.4064/bc74-0-7
[8] Cieślak, T., Laurençot, Ph.: Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 437-446 (2010) · Zbl 1270.35377 · doi:10.1016/j.anihpc.2009.11.016
[9] Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. J. Differ. Equ. 252, 5832-5851 (2012) · Zbl 1252.35087 · doi:10.1016/j.jde.2012.01.045
[10] Djie, K.C., Winkler, M.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. TMA 72, 1044-1064 (2010) · Zbl 1183.92012 · doi:10.1016/j.na.2009.07.045
[11] Herrero, M.A., Velázquez, J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306, 583-623 (1996) · Zbl 0864.35008 · doi:10.1007/BF01445268
[12] Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 24, 633-683 (1997) · Zbl 0904.35037
[13] Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[14] Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819-824 (1992) · Zbl 0746.35002
[15] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[16] Mizoguchi, N., Senba, T.: Type-II blowup of solutions to an elliptic-parabolic system. Adv. Math. Sci. Appl. 17, 505-545 (2007) · Zbl 1147.35013
[17] Mizoguchi, N., Senba, T.: A sufficient condition for type I blowup in a parabolic-elliptic system. J. Differ. Equ. 250, 182-203 (2011) · Zbl 1218.35049 · doi:10.1016/j.jde.2010.10.016
[18] Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581-601 (1995) · Zbl 0843.92007
[19] Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6, 37-55 (2001) · Zbl 0990.35024
[20] Senba, T., Suzuki, T.: A quasi-linear parabolic system of chemotaxis. Abstr. Appl. Anal. 2006, 23061 (2006) · Zbl 1134.35059 · doi:10.1155/AAA/2006/23061
[21] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[22] Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12-24 (2010) · Zbl 1182.35220
[23] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. (2013). doi:10.1016/j.matpur.2013.01.020 · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.