×

zbMATH — the first resource for mathematics

Some remarks on the solvability of non-local elliptic problems with the Hardy potential. (English) Zbl 1295.35376

MSC:
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0308210500001505 · Zbl 1014.35023 · doi:10.1017/S0308210500001505
[2] DOI: 10.1007/s10231-002-0064-y · Zbl 1223.35151 · doi:10.1007/s10231-002-0064-y
[3] DOI: 10.3934/cpaa.2003.2.539 · Zbl 1148.35324 · doi:10.3934/cpaa.2003.2.539
[4] Abdellaoui B., Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 pp 159– (2007)
[5] Alama S., Adv. Differential Equations 4 pp 813– (1999)
[6] DOI: 10.1016/0022-1236(73)90051-7 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[7] DOI: 10.1017/CBO9780511809781 · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[8] DOI: 10.1016/j.jde.2012.02.023 · Zbl 1245.35034 · doi:10.1016/j.jde.2012.02.023
[9] Beckner W., Proc. Amer. Math. Soc. 123 pp 1897– (1995)
[10] Bertoin J., Cambridge Tracts in Mathematics 121, in: Lévy Processes (1996)
[11] DOI: 10.1017/S0308210511000175 · Zbl 1290.35304 · doi:10.1017/S0308210511000175
[12] Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2011) · Zbl 1220.46002
[13] Brezis H., Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 pp 223– (1998)
[14] Brezis H., Adv. Differential Equations 1 pp 73– (1996)
[15] DOI: 10.1007/s00029-005-0003-z · Zbl 1161.35383 · doi:10.1007/s00029-005-0003-z
[16] DOI: 10.1016/j.aim.2010.01.025 · Zbl 1198.35286 · doi:10.1016/j.aim.2010.01.025
[17] DOI: 10.1080/03605300600987306 · Zbl 1143.26002 · doi:10.1080/03605300600987306
[18] Cont R., Chapman & Hall/CRC Financial Mathematics Series, in: Financial Modelling with Jump Processes (2004)
[19] DOI: 10.3934/cpaa.2008.7.795 · Zbl 1156.35039 · doi:10.3934/cpaa.2008.7.795
[20] DOI: 10.1016/j.bulsci.2011.12.004 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[21] DOI: 10.1007/BF02786656 · Zbl 1034.35043 · doi:10.1007/BF02786656
[22] DOI: 10.1016/j.jfa.2012.06.018 · Zbl 1260.35050 · doi:10.1016/j.jfa.2012.06.018
[23] DOI: 10.1007/s00220-009-0759-7 · Zbl 1184.35121 · doi:10.1007/s00220-009-0759-7
[24] DOI: 10.1090/S0894-0347-07-00582-6 · Zbl 1202.35146 · doi:10.1090/S0894-0347-07-00582-6
[25] DOI: 10.1016/j.jfa.2008.05.015 · Zbl 1189.26031 · doi:10.1016/j.jfa.2008.05.015
[26] DOI: 10.2307/2001562 · Zbl 0729.35051 · doi:10.2307/2001562
[27] DOI: 10.1006/jdeq.1997.3375 · Zbl 0918.35052 · doi:10.1006/jdeq.1997.3375
[28] DOI: 10.1016/j.na.2006.07.046 · Zbl 1387.35224 · doi:10.1016/j.na.2006.07.046
[29] Ghoussoub N., Ann. Inst. H. Poincaré Anal. Non Linéaire 6 pp 321– (1989)
[30] DOI: 10.1007/BF01609852 · Zbl 0375.35047 · doi:10.1007/BF01609852
[31] DOI: 10.1007/978-3-642-65183-0 · doi:10.1007/978-3-642-65183-0
[32] DOI: 10.1007/BF02547354 · JFM 60.0726.05 · doi:10.1007/BF02547354
[33] DOI: 10.1016/j.jmaa.2011.12.032 · Zbl 1234.35291 · doi:10.1016/j.jmaa.2011.12.032
[34] DOI: 10.3934/cpaa.2013.12.2445 · Zbl 1302.35413 · doi:10.3934/cpaa.2013.12.2445
[35] DOI: 10.1002/cpa.20153 · Zbl 1141.49035 · doi:10.1002/cpa.20153
[36] Stein E. M., Princeton Mathematical Series, in: Singular Integrals and Differentiability Properties of Functions (1970) · Zbl 0207.13501
[37] Stein E. M., J. Math. Mech. 7 pp 503– (1958)
[38] Struwe M., Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2000) · Zbl 0939.49001
[39] DOI: 10.1007/s00526-010-0378-3 · Zbl 1248.35078 · doi:10.1007/s00526-010-0378-3
[40] Vlahos L., Normal and Anomalous Diffusion: A Tutorial. In Order and Chaos 10 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.