×

On standing wave solutions for discrete nonlinear Schrödinger equations. (English) Zbl 1295.39004

Summary: The purpose of this paper is to study a class of discrete nonlinear Schrödinger equations. Under a weak superlinearity condition at infinity instead of the classical Ambrosetti-Rabinowitz condition, the existence of standing waves of the equations is obtained by using the Nehari manifold approach.

MSC:

39A12 Discrete version of topics in analysis
35Q55 NLS equations (nonlinear Schrödinger equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Christodoulides, D.; Joseph, R., Discrete self-focusing in nonlinear arrays of coupled waveguides, Optics Letters, 13, 794-796 (1988)
[2] Aceves, A. B., Optical gap solitons: past, present, and future; theory and experiments, Chaos, 10, 3, 584-589 (2000) · Zbl 0971.78014 · doi:10.1063/1.1287065
[3] Bronski, J. C.; Segev, M.; Weinstein, M. I., Mathematical frontiers in optical solitons, Proceedings of the National Academy of Sciences of the United States of America, 98, 23, 12872-12873 (2001) · doi:10.1073/pnas.231499298
[4] Sukhorukov, A. A.; Kivshar, Y. S., Generation and stability of discrete gap solitons, Optics Letters, 28, 23, 2345-2347 (2003)
[5] Weinstein, M. I., Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12, 3, 673-691 (1999) · Zbl 0984.35147 · doi:10.1088/0951-7715/12/3/314
[6] Davydov, A. S., The theory of contraction of proteins under their excitation, Journal of Theoretical Biology, 38, 3, 559-569 (1973)
[7] Flach, S.; Gorbach, A. V., Discrete breathers—advances in theory and applications, Physics Reports, 467, 1-3, 1-116 (2008) · doi:10.1016/j.physrep.2008.05.002
[8] Flach, S.; Willis, C. R., Discrete breathers, Physics Reports, 295, 5, 181-264 (1998) · doi:10.1016/S0370-1573(97)00068-9
[9] Hennig, D.; Tsironis, G. P., Wave transmission in nonlinear lattices, Physics Reports, 307, 5-6, 333-432 (1999) · doi:10.1016/S0370-1573(98)00025-8
[10] Su, W.; Schieer, J.; Heeger, A., Solions in polyacetylene, Physical Review Letters, 42, 1698-1701 (1979) · doi:10.1103/PhysRevLett.42.1698
[11] Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C., The discrete self-trapping equation, Physica D. Nonlinear Phenomena, 16, 3, 318-338 (1985) · Zbl 0583.34026 · doi:10.1016/0167-2789(85)90012-0
[12] Mai, A.; Zhou, Z., Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstract and Applied Analysis, 2013 (2013) · Zbl 1291.35356 · doi:10.1155/2013/317139
[13] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19, 1, 27-40 (2006) · Zbl 1220.35163 · doi:10.1088/0951-7715/19/1/002
[14] Pankov, A., Gap solitons in periodic discrete nonlinear Schrödinger equations. II. A generalized Nehari manifold approach, Discrete and Continuous Dynamical Systems. Series A, 19, 2, 419-430 (2007) · Zbl 1220.35164 · doi:10.3934/dcds.2007.19.419
[15] Zhang, G.; Pankov, A., Standing waves of the discrete nonlinear Schrödinger equations with growing potentials, Communications in Mathematical Analysis, 5, 2, 38-49 (2008) · Zbl 1168.35437
[16] Zhang, G.; Pankov, A., Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials. II, Applicable Analysis, 89, 9, 1541-1557 (2010) · Zbl 1387.35558 · doi:10.1080/00036810902942234
[17] Pankov, A., Standing waves for discrete nonlinear Schrödinger equations: sign-changing nonlinearities, Applicable Analysis, 92, 2, 308-317 (2013) · Zbl 1266.37043 · doi:10.1080/00036811.2011.609987
[18] Pankov, A.; Zhang, G., Standing wave solutions for discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearity, Journal of Mathematical Sciences, 177, 1, 71-82 (2011) · Zbl 1290.35248 · doi:10.1007/s10958-011-0448-x
[19] Willem, M., Minimax Theorems. Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, x+162 (1996), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 0856.49001 · doi:10.1007/978-1-4612-4146-1
[20] Zhang, G., Breather solutions of the discrete nonlinear Schrödinger equations with unbounded potentials, Journal of Mathematical Physics, 50, 1-12 (2009) · Zbl 1200.37072
[21] Rabinowitz, P. H., Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, viii+100 (1986), Washington, DC, USA: American Mathematical Society, Washington, DC, USA · Zbl 0609.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.