×

Levy multiplicative chaos and star scale invariant random measures. (English) Zbl 1295.60064

In [Lect. Notes Phys. 12, 333–351 (1972; Zbl 0227.76081)], B. B. Mandelbrot built random measures describing energy dissipation and motivating intermittency effect in Kolmogorov’s theory of fully developed turbulence.
In the present paper, the authors study the solution to the continuous star equation (the celebrated star equation was introduced by B. Mandelbrot [C. R. Acad. Sci., Paris, Sér. A 278, 289–292 (1974; Zbl 0276.60096); ibid. 355–358 (1974; Zbl 0276.60097)]).

MSC:

60G57 Random measures
28A80 Fractals
60H25 Random operators and equations (aspects of stochastic analysis)
60G15 Gaussian processes
60G18 Self-similar stochastic processes
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Allez, R., Rhodes, R. and Vargas, V. (2013). Lognormal \(\star\)-scale invariant random measures. Probab. Theory Related Fields 155 751-788. · Zbl 1278.60083
[2] Bacry, E. and Muzy, J. F. (2003). Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 449-475. · Zbl 1032.60046
[3] Barral, J., Jin, X., Rhodes, R. and Vargas, V. (2013). Gaussian multiplicative chaos and KPZ duality. Comm. Math. Phys. 323 451-485. · Zbl 1287.83019
[4] Barral, J. and Mandelbrot, B. B. (2002). Multifractal products of cylindrical pulses. Probab. Theory Related Fields 124 409-430. · Zbl 1014.60042
[5] Borkar, V. S. (1995). Probability Theory : An Advanced Course . Springer, New York. · Zbl 0838.60001
[6] Castaing, B., Gagne, Y. and Hopfinger, E. J. (1990). Velocity probability density-functions of high Reynolds-number turbulence. Phys. D 46 2. 177-200. · Zbl 0718.60097
[7] Castaing, B., Gagne, Y. and Marchand, M. (1994). Conditional velocity pdf in 3-D turbulence. J. Phys. II France 4 1-8.
[8] Comets, F. and Vargas, V. (2006). Majorizing multiplicative cascades for directed polymers in random media. ALEA Lat. Am. J. Probab. Math. Stat. 2 267-277. · Zbl 1105.60074
[9] Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes , Vol. 2, 2nd ed. Springer, New York. · Zbl 1159.60003
[10] Duplantier, B., Rhodes, R., Sheffield, S. and Vargas, V. (2014). Critical Gaussian multiplicative chaos: Convergence of the derivative martingale. Ann. Probab. · Zbl 1306.60055
[11] Durrett, R. and Liggett, T. M. (1983). Fixed points of the smoothing transformation. Probab. Theory Related Fields 64 275-301. · Zbl 0506.60097
[12] Fan, A. H. (1997). Sur les chaos de Lévy stables d’indice \(0<\alpha<1\). Ann. Sci. Math. Québec 21 53-66. · Zbl 0884.60040
[13] Feller, W. (1971). An Introduction to Probability Theory and Its Applications , 2nd ed. Wiley, New York. · Zbl 0219.60003
[14] Frisch, U. (1995). Turbulence . Cambridge Univ. Press, Cambridge. · Zbl 0832.76001
[15] Kahane, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 105-150. · Zbl 0596.60041
[16] Kahane, J. P. and Peyrière, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22 131-145. · Zbl 0349.60051
[17] Mandelbrot, B. B. (1972). Possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent turbulence. In Statistical Models and Turbulence (M. Rosenblatt and C. V. Atta, eds.). Lecture Notes in Physics 12 331-358. Springer, New York. · Zbl 0227.76081
[18] Mandelbrot, B. (1974). Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. A 278 289-292 and 355-358. · Zbl 0276.60097
[19] Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 331-358. · Zbl 0289.76031
[20] Maruyama, G. (1970). Infinitely divisible processes. Theory Probab. Appl. 15 3-23. · Zbl 0268.60036
[21] Novikov, E. A. and Stewart, R. W. (1964). Intermittence of turbulence and the spectrum of fluctuations of energy dissipation. Isvestia Akademii Nauk SSR Earia Geofizicheskaia 3 408-413.
[22] Rajput, B. S. and Rosiński, J. (1989). Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 451-487. · Zbl 0659.60078
[23] Rhodes, R. and Vargas, V. (2010). Multidimensional multifractal random measures. Electron. J. Probab. 15 241-258. · Zbl 1201.60046
[24] Rhodes, R. and Vargas, V. (2013). Optimal transportation for multifractal random measures and applications. Ann. Inst. Henri Poincaré Probab. Stat. 49 119-137. · Zbl 1296.60130
[25] Robert, R. and Vargas, V. (2010). Gaussian multiplicative chaos revisited. Ann. Probab. 38 605-631. · Zbl 1191.60066
[26] Schmitt, F., Lavallée, D., Schertzer, D. and Lovejoy, S. (1992). Empirical determination of universal multifractal exponents in turbulent velocity fields. Phys. Rev. Lett. 68 305-308.
[27] Stolovitzky, G., Kailasnath, P. and Sreenivasan, K. R. (1992). Kolmogorov’s Refined Similarity Hypotheses. Phys. Rev. Lett. 69 1178-1181. · Zbl 0849.76031
[28] Yaglom, A. M. (1966). The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Doklady Akademii Nauk SSSR 16 49-52.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.