Unbiased shifts of Brownian motion. (English) Zbl 1295.60093

Consider a two-sided standard Brownian motion \(B= (B_t)_{t\in\mathbb{R}}\) and a probability measure \(\nu\) on \(\mathbb{R}\). Among the random, not necessarily stopping, times \(T\) which solve the Skorodhod embedding problem: the law of \(B_T\) is \(\nu\), there are the so-called “unbiased shifts”, i.e., those \(T\) which are \(B\)-measurable and such that \((B_{T+t}- B_T)_{t\in\mathbb{R}}\) is Brownian too and independent of \(B_T\).
This article focuses on those unbiased shifts. First, the authors characterize all of them, on the one hand in terms of the allocation rule \(t\mapsto t+T_0\theta_t\) and its relationship to local times, and on the other hand in terms of Palm measures associated with local times. The authors then take advantage of these characterizations to construct unbiased shifts, and in particular a solution which is also a stopping time, using a stopping time previously introduced by J. Bertoin and Y. Le Jan [Ann. Probab. 20, No. 1, 538–548 (1992; Zbl 0749.60038)].
Moreover, integrability and minimality properties of the solutions are discussed, and finally, more general Lévy processes are also considered. Links are made with the so-called matching of Poisson processes, and the whole article is very well written.


60J65 Brownian motion
58J65 Diffusion processes and stochastic analysis on manifolds
60G57 Random measures
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)


Zbl 0749.60038
Full Text: DOI arXiv Euclid


[1] Barlow, M. T., Perkins, E. A. and Taylor, S. J. (1986). Two uniform intrinsic constructions for the local time of a class of Lévy processes. Illinois J. Math. 30 19-65. · Zbl 0571.60082
[2] Barlow, M. T. and Yor, M. (1981). (Semi-) martingale inequalities and local times. Z. Wahrsch. Verw. Gebiete 55 237-254. · Zbl 0451.60050
[3] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121 . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003
[4] Bertoin, J. and Le Jan, Y. (1992). Representation of measures by balayage from a regular recurrent point. Ann. Probab. 20 538-548. · Zbl 0749.60038
[5] Bretagnolle, J. (1971). Résultats de Kesten sur les processus à accroissements indépendants. In Séminaire de Probabilités , V ( Univ. Strasbourg , Année Universitaire 1969 - 1970). Lecture Notes in Math. 191 21-36. Springer, Berlin.
[6] Cox, A. M. G. and Hobson, D. G. (2006). Skorokhod embeddings, minimality and non-centred target distributions. Probab. Theory Related Fields 135 395-414. · Zbl 1099.60031
[7] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74 . Cambridge Univ. Press, Cambridge. · Zbl 1023.60001
[8] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. , 2nd ed. Wiley, New York. · Zbl 0219.60003
[9] Geman, D. and Horowitz, J. (1973). Occupation times for smooth stationary processes. Ann. Probab. 1 131-137. · Zbl 0264.60027
[10] Getoor, R. K. and Kesten, H. (1972). Continuity of local times for Markov processes. Compos. Math. 24 277-303. · Zbl 0293.60069
[11] Holroyd, A. E., Pemantle, R., Peres, Y. and Schramm, O. (2009). Poisson matching. Ann. Inst. Henri Poincaré Probab. Stat. 45 266-287. · Zbl 1175.60012
[12] Holroyd, A. E. and Peres, Y. (2005). Extra heads and invariant allocations. Ann. Probab. 33 31-52. · Zbl 1097.60032
[13] Jain, N. C. and Pruitt, W. E. (1975). The other law of the iterated logarithm. Ann. Probab. 3 1046-1049. · Zbl 0319.60031
[14] Kagan, Y. A. and Vere-Jones, D. (1996). Athens Conference on Applied Probability and Time Series Analysis. Vol. I, (C. C. Heyde, Y. V. Prohorov, R. Pyke and S. T. Rachev, eds.). Lecture Notes in Statistics 114 . Springer, New York.
[15] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[16] Last, G. (2010). Modern random measures: Palm theory and related models. In New Perspectives in Stochastic Geometry (W. Kendall and I. Molchanov, eds.) 77-110. Oxford Univ. Press, Oxford. · Zbl 1206.60049
[17] Last, G. and Thorisson, H. (2009). Invariant transports of stationary random measures and mass-stationarity. Ann. Probab. 37 790-813. · Zbl 1176.60036
[18] Liggett, T. M. (2002). Tagged particle distributions or how to choose a head at random. In In and Out of Equilibrium ( Mambucaba , 2000) (V. Sidoravicius, ed.). Progress in Probability 51 133-162. Birkhäuser, Boston, MA. · Zbl 1108.60319
[19] Mandelbrot, B. B. (1982). The Fractal Geometry of Nature . W. H. Freeman and Co., San Francisco, CA. · Zbl 0504.28001
[20] Mecke, J. (1967). Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. Z. Wahrsch. Verw. Gebiete 9 36-58. · Zbl 0164.46601
[21] Monroe, I. (1972). On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 1293-1311. · Zbl 0267.60050
[22] Monroe, I. (1972). Using additive functionals to embed preassigned distributions in symmetric stable processes. Trans. Amer. Math. Soc. 163 131-146. · Zbl 0238.60033
[23] Mörters, P. and Peres, Y. (2010). Brownian Motion . Cambridge Univ. Press, Cambridge. · Zbl 1243.60002
[24] Obłój, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321-390. · Zbl 1189.60088
[25] Perkins, E. (1981). A global intrinsic characterization of Brownian local time. Ann. Probab. 9 800-817. · Zbl 0469.60081
[26] Petrov, V. V. (1995). Limit Theorems of Probability Theory : Sequences of Independent Random Variables. Oxford Studies in Probability 4 . Oxford Univ. Press, New York. · Zbl 0826.60001
[27] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften 293 . Springer, Berlin. · Zbl 0917.60006
[28] Spitzer, F. (1960). A Tauberian theorem and its probability interpretation. Trans. Amer. Math. Soc. 94 150-169. · Zbl 0216.21201
[29] Thorisson, H. (1996). Transforming random elements and shifting random fields. Ann. Probab. 24 2057-2064. · Zbl 0879.60051
[30] Thorisson, H. (2000). Coupling , Stationarity , and Regeneration . Springer, New York. · Zbl 0949.60007
[31] Zähle, U. (1991). Self-similar random measures. III. Self-similar random processes. Math. Nachr. 151 121-148. · Zbl 0739.60039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.