×

Non-autonomous impulsive Cauchy problems of parabolic type involving nonlocal initial conditions. (English) Zbl 1295.65061

Summary: We consider a nonautonomous impulsive Cauchy problem of parabolic type involving a nonlocal initial condition in a Banach space \(X\), where the operators in linear part (possibly unbounded) depend on time \(t\) and generate an evolution family. New existence theorems of mild solutions to such a problem, in the absence of compactness and Lipschitz continuity of the impulsive item and nonlocal item, are established. The non-autonomous impulsive Cauchy problem of neutral type with nonlocal initial condition is also considered. Comparisons with available literature are also given. Finally, as a sample of application, these results are applied to a system of partial differential equations with impulsive condition and nonlocal initial condition. Our results essentially extend some existing results in this area.

MSC:

65J08 Numerical solutions to abstract evolution equations
35K90 Abstract parabolic equations
35R12 Impulsive partial differential equations

References:

[1] N.U. Ahmed, Existence of optimal controls for a general class of impulsive systems on Banach space , SIAM J. Cont. Optim. 42 (2003), 669-685. · Zbl 1037.49036 · doi:10.1137/S0363012901391299
[2] —-, Optimal feedback control for impulsive systems on the space of finitely additive measures , Publ. Math. Debr. 70 (2007), 371-393. · Zbl 1164.34026
[3] A. Anguraj and K. Karthikeyan, Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions , Nonlinear Anal. 70 (2009), 2717-2721. · Zbl 1165.34416 · doi:10.1016/j.na.2008.03.059
[4] D.D. Bainov and P.S. Simeonov, Systems with impulse effect , Ellis Horwood, Chichester, 1989. · Zbl 0671.34052
[5] J. Banas and K. Goebel, Measure of noncompactness in Banach spaces , Lect. Notes Pure Appl. Math. 60 , Marcel Dekker, New York, 1980. · Zbl 0441.47056
[6] M. Benchohra, E.P. Gatsori, J. Henderson and S.K. Ntouyas, Nondensely defined evolution impulsive differential inclusions with nonlocal conditions , J. Math. Anal. Appl. 286 (2003), 307-325. · Zbl 1039.34056 · doi:10.1016/S0022-247X(03)00490-6
[7] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive differential equations and inclusions , vol. 2, Hindawi Publishing Corporation, New York, 2006. · Zbl 1130.34003
[8] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem , J. Math. Anal. Appl. 162 (1991), 494-505. · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[9] T. Cardinali and P. Rubbioni, Impulsive semilinear differential inclusions : Topological structure of the solution set and solutions on non-compact domains , Nonlinear Anal. 69 (2008), 73-84. · Zbl 1147.34045 · doi:10.1016/j.na.2007.05.001
[10] P.J. Chen and M.E. Gurtin, On a theory of heat conduction involving two temperatures , Z. Angew. Math. Phys. 19 (1968), 614-627. · Zbl 0159.15103 · doi:10.1007/BF01594969
[11] K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions , J. Math. Anal. Appl. 179 (1993), 630-637. · Zbl 0798.35076 · doi:10.1006/jmaa.1993.1373
[12] K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations , GTM 194 , Springer, Berlin, 2000. · Zbl 0952.47036
[13] K. Ezzinbi, X. Fu and K. Hilal, Existence and regularity in the \(\alpha\)-norm for some neutral partial differential equations with nonlocal conditions , Nonlinear Anal. 67 (2007), 1613-1622. · Zbl 1119.35105 · doi:10.1016/j.na.2006.08.003
[14] K. Ezzinbi and J. Liu, Nondensely defined evolution equations with nonlocal conditions , Math. Comp. Model. 36 (2002), 1027-1038. · Zbl 1035.34063 · doi:10.1016/S0895-7177(02)00256-X
[15] Z.B. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions , J. Funct. Anal. 258 (2010), 1709-1727. · Zbl 1193.35099 · doi:10.1016/j.jfa.2009.10.023
[16] W.E. Fitzgibbon, Semilinear functional equations in Banach space , J. Differential Equations 29 (1978), 1-14. · Zbl 0392.34041 · doi:10.1016/0022-0396(78)90037-2
[17] X. Fu and K. Ezzinbi, Existence of solutions for neutral functional differential evolution equations with nonlocal conditions , Nonlinear Anal. 54 (2003), 215-227. · Zbl 1034.34096 · doi:10.1016/S0362-546X(03)00047-6
[18] D.J. Guo and X. Liu, Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces , J. Math. Anal. Appl. 177 (1993), 538-552. · Zbl 0787.45008 · doi:10.1006/jmaa.1993.1276
[19] M.E. Hernández and S.M. Tanaka Aki, Global solutions for abstract impulsive differential equations , Nonlinear Anal. 72 (2010), 1280-1290. · Zbl 1183.34083 · doi:10.1016/j.na.2009.08.020
[20] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations , World Scientific, Singapore, 1989. · Zbl 0719.34002
[21] J. Liang, J.H. Liu and T.J. Xiao, Nonlocal impulsive problems for nonlinear diffrential equations in Banach spaces , Math. Comp. Model. 49 (2009), 798-804. · Zbl 1173.34048 · doi:10.1016/j.mcm.2008.05.046
[22] J. Liu, Nonlinear impulsive evolution equations , Dyn. Cont. Discr. Impul. Syst. 6 (1999), 77-85. · Zbl 0932.34067
[23] J. Liu, G. N’Gurkata and N. van Minh, A Massera type theorem for almost automorphic solutions of differential equations , J. Math. Anal. Appl. 299 (2004), 587-599. · Zbl 1081.34054 · doi:10.1016/j.jmaa.2004.05.046
[24] X. Liu and A. Willms, Stability analysis and applications to large scale impulsive systems : A new approach , Canad. Appl. Math. Quart. 3 (1995), 419-444. · Zbl 0849.34044 · doi:10.1007/BF02662497
[25] C.M. Marle, Mesures et probabilities , Hermann, Paris, 1974. · Zbl 0306.28001
[26] J.J. Nieto and D.O’Regan, Variational approach to impulsive differential equations , Nonlinear Anal. 10 (2009), 680-690. · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[27] A. Pazy, Semigroups of linear operators and applications to partial differential equations , in Applied mathematical sciences , vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[28] Y. Rogovchenko, Impulsive evolution systems : Main results and new trends , Dyn. Cont. Discr. Impul. Syst. 3 (1997), 57-88. · Zbl 0879.34014
[29] A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations , World Scientific, Singapore, 1995. · Zbl 0837.34003
[30] R.N. Wang and Y.H. Yang, On the Cauchy problems of fractional evolution equations with nonlocal initial conditions , Results. Math. 2011 , doi 10.1007/s00025-011-0142-9. · Zbl 1264.34015 · doi:10.1007/s00025-011-0142-9
[31] K. Yosida, Functional analysis , 6th ed., Springer-Verlag, Berlin, 1980. · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.